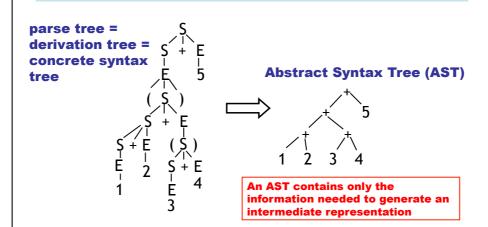
Compiler Construction Lent Term 2015 Lectures 13 --- 16 (of 16)

- Return to lexical analysis: application of Theory of Regular Languages and Finite Automata
- 2. Generating Recursive descent parsers
- 3. Beyond Recursive Descent Parsing I
- 4. Beyond Recursive Descent Parsing II

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

1

Concrete vs. Abstract Syntax Trees



Normally a compiler constructs the concrete syntax tree only implicitly (in the parsing process) and explicitly constructs an AST.

```
On to Context Free Grammars (CFGs)

E ::= ID

E ::= NUM

E ::= E * E

ID and NUM are lexical classes

E ::= E + E

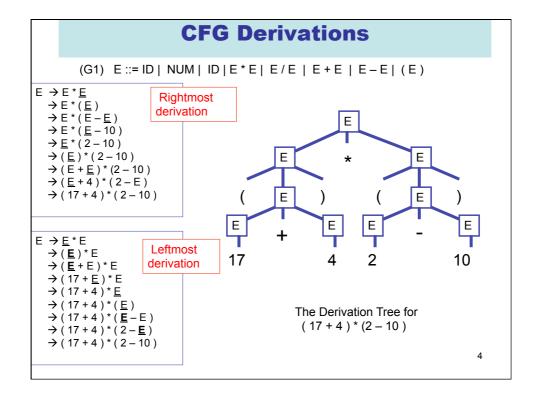
E ::= E + E

E ::= E - E

E ::= E - E

Usually will write this way

E ::= ID | NUM | E * E | E / E | E - E | (E)
```



More formally, ...

- A CFG is a quadruple G = (N, T, R, S) where
 - N is the set of non-terminal symbols
 - T is the set of terminal symbols (N and T disjoint)
 - S∈N is the start symbol
 - $R \subseteq N \times (N \cup T)^*$ is a set of rules
- Example: The grammar of nested parentheses **G** = (N, T, R, S) where
 - $N = \{S\}$
 - $T = \{ (,) \}$
 - $R = { (S, (S)), (S, SS), (S,) }$

We will normally write R as S ::= (S) | SS |

Derivations, more formally...

- Start from start symbol (S)
- · Productions are used to derive a sequence of tokens from the start symbol
- For arbitrary strings α , β and γ comprised of both terminal and non-terminal symbols,

and a production $A \rightarrow \beta$,

a single step of derivation is

 $\alpha A \gamma \Rightarrow \alpha \beta \gamma$

- i.e., substitute β for an occurrence of A
- $\alpha \Rightarrow^* \beta$ means that b can be derived from a in 0 or more single steps
- $\alpha \Rightarrow + \beta$ means that b can be derived from a in 1 or more single steps

L(G) = The Language Generated by Grammar G

The language generated by G is the set of all terminal strings derivable from the start symbol S:

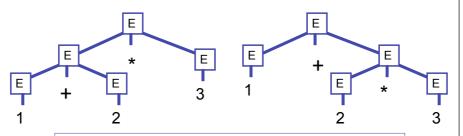
$$L(G) = \{ w \in T^* \mid S \Rightarrow +w \}$$

For any subset W of T^* , if there exists a CFG G such that L(G) = W, then W is called a Context-Free Language (CFL) over T.

7

Ambiguity

(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E - E | (E)



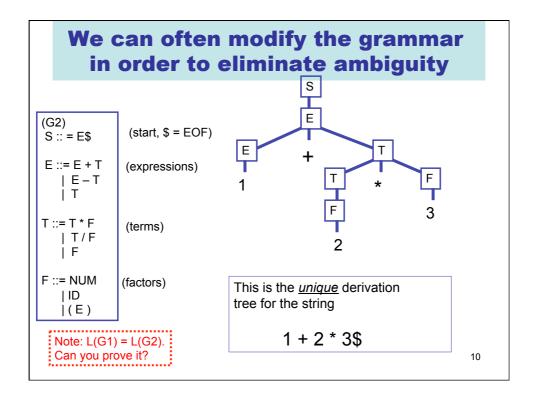
Both derivation trees correspond to the string

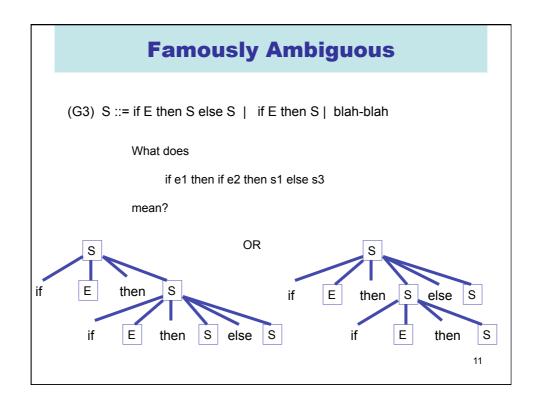
This type of ambiguity will cause problems when we try to go from strings to derivation trees!

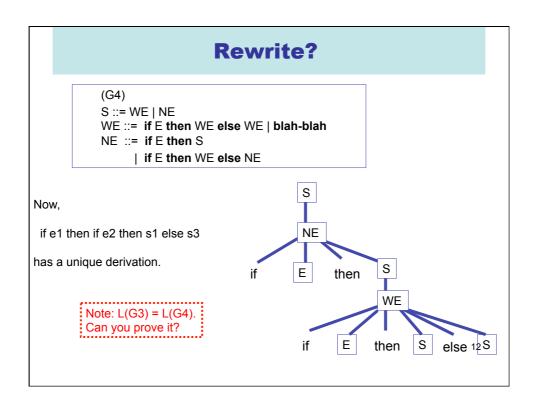
Problem: Generation vs. Parsing

- Context-Free Grammars (CFGs) describe how to to generate
- Parsing is the inverse of generation,
 - Given an input string, is it in the language generated by a CFG?
 - If so, construct a derivation tree (normally called a *parse tree*).
 - Ambiguity is a big problem

Note: recent work on Parsing Expression Grammars (PEGs) represents an attempt to develop a formalism that describes parsing directly. This is beyond the scope of these lectures ...







Fun Fun Facts

See Hopcroft and Ullman, "Introduction to Automata Theory, Languages, and Computation"

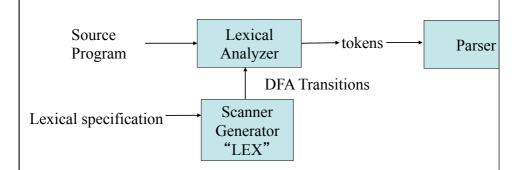
(1) Some context free languages are *inherently ambiguous* --- every context-free grammar will be ambiguous. For example:

$$L = \{ a^{n} b^{n} c^{m} d^{m} | m \ge 1, n \ge 1 \} \cup \{ a^{n} b^{m} c^{m} d^{n} | m \ge 1, n \ge 1 \}$$

- (2) Checking for ambiguity in an arbitrary context-free grammar is not decidable! Ouch!
- (3) Given two grammars G1 and G2, checking L(G1) = L(G2) is not decidable! Ouch!

13

Generating Lexical Analyzers



The idea : use <u>regular expressions</u> as the basis of a lexical specification. The core of the lexical analyzer is then a deterministic finite automata (DFA)

Recall from *Regular Languages and Finite Automata* (Part 1A)

Regular expressions over an alphabet Σ

- $\bullet\,$ each symbol $a\in\Sigma$ is a regular expression
- ullet ε is a regular expression
- ∅ is a regular expression
- ullet if r and s are regular expressions, then so is (r|s)
- ullet if r and s are regular expressions, then so is rs
- ullet if r is a regular expression, then so is $(r)^*$

Every regular expression is built up inductively, by *finitely many* applications of the above rules.

(N.B. we assume ε , \emptyset , (,), |, and * are *not* symbols in Σ .)

Slide 5

Traditional Regular Language Problem

Given a regular expression,

ρ

and an input string w, determine if $w \in L(e)$

One method: Construct a DFA M from e and test if it accepts w.

Something closer to the "lexing problem"

Given an ordered list of regular expressions,

$$e_1$$
 e_2 \cdots e_k

and an input string w find a list of pairs

$$(i_1, w_1), (i_2, w_2), \dots (i_n, w_n)$$

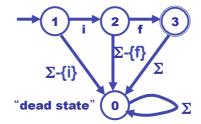
such that

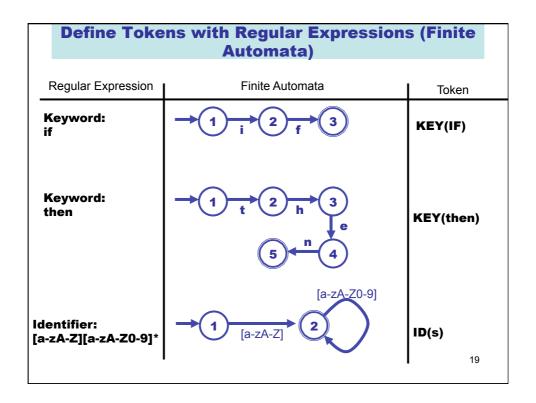
- 1) $w = w_1 w_2 ... w_n$
- 2) $w_j \in L(e_{i_j})$
- 3) $w_j \in L(e_s) \rightarrow i_j \le s$ (priority rule)
- 4) $\forall j : \forall u \in \operatorname{prefix}(w_{j+1}w_{j+2}\cdots w_n) : u \neq \varepsilon$ $\rightarrow \forall s : w_j u \notin L(e_s)$ (longest match) ₁₇

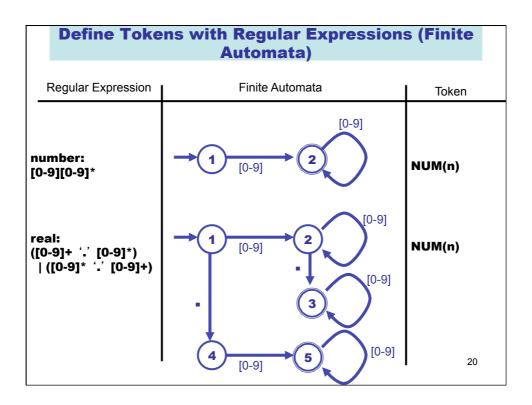
Define Tokens with Regular Expressions (Finite Automata)

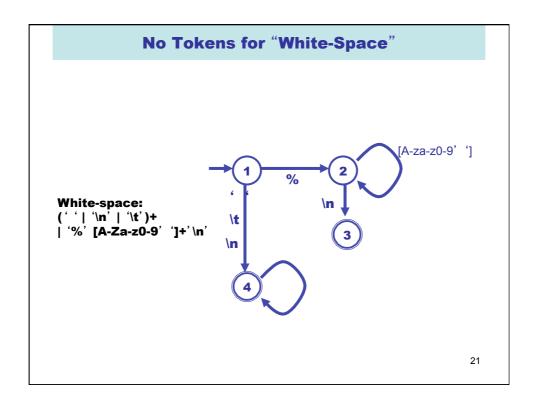
Keyword: if

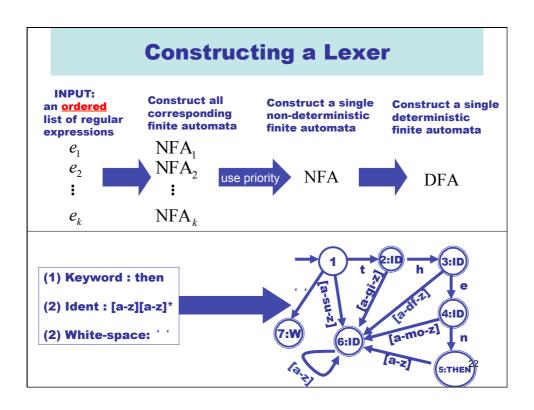
This FA is really shorthand for:

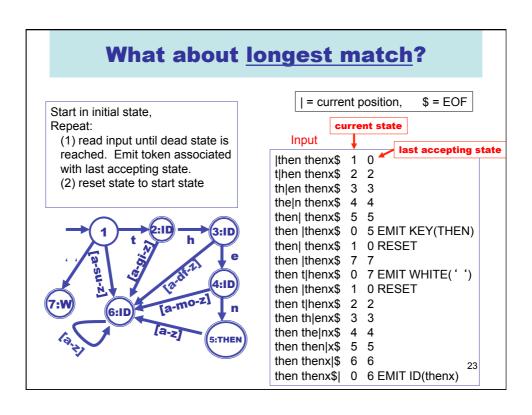












Predictive (Recursive Descent) Parsing Can we automate this? int tok = getToken(): (G5) void advance() {tok = getToken();} void eat (int t) {if (tok = t) advance(); else error();} S :: = if E then S else S | begin S L void S() {switch(tok) { case IF: eat(IF); E(); eat(THEN); S(); eat(ELSE); S(); break; case BEGIN: eat(BEGIN); S(); L(); break; case PRINT: eat(PRINT); E(); break; | print E E ::= NUM = NUM default: error(); L ::= end void L() {switch(tok) { case END: eat(END); break; case SEMI: eat(SEMI); S(); L(); break; | ; S L default: error(); void E() {eat(NUM) ; eat(EQ); eat(NUM); } Parse corresponds to a left-most derivation constructed in a "top-down" manner From Andrew Appel, "Modern Compiler Implementation in Java" page 46

Eliminate Left-Recursion

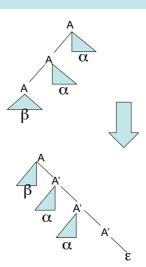
Immediate left-recursion

A ::=
$$A\alpha 1 | A\alpha 2 | ... | A\alpha k |$$

 $\beta 1 | \beta 2 | ... | \beta n$

A ::= β1 A' | β2 A' | ... | βn A'

A' ::= α 1 A' | α 2 A' | . . . | α k A' | ϵ



For eliminating left-recursion in general, see Aho and Ullman.²⁵

Eliminating Left Recursion

(G2) S :: = E\$

E ::= E + T | E - T | T

T ::= T * F | T / F | F

F ::= NUM | ID | (E) Note that

E ::= T and E ::= E + T

will cause problems since FIRST(T) will be included in FIRST(E + T) ---- so how can we decide which poduction To use based on next token?

Solution: eliminate "left recursion"!

E ::= T E'

E' ::= + T E'

Fliminate left recursion

(G6) S :: = E\$

E ::= T E'

E' ::= + T E' | - T E'

T ::= F T'

T' ::= * F T' | / F T'

F ::= NUM | ID | (E)

FIRST and FOLLOW

For each non-terminal X we need to compute

FIRST[X] = the set of terminal symbols that can begin strings derived from X

FOLLOW[X] = the set of terminal symbols that can immediately follow X in some derivation

nullable[X] = true of X can derive the empty string, false otherwise

nullable[Z] = false, for Z in T

 $nullable[Y1\ Y2\ ...\ Yk] = nullable[Y1]$ and $...\ nullable[Yk]$, for Y(i) in N union T.

 $FIRST[Z] = \{Z\}, for Z in T$

FIRST[X Y1 Y2 ... Yk] = FIRST[X] if not nullable[X]

FIRST[X Y1 Y2 ... Yk] =FIRST[X] union FIRST[Y1 ... Yk] otherwise

27

Computing First, Follow, and nullable

```
For each terminal symbol Z
 FIRST[Z] := \{Z\};
 nullable[Z] := false;
```

For each non-terminal symbol X FIRST[X] := FOLLOW[X] := {}; nullable[X] := false;

for each production $X \rightarrow Y1 Y2 ... Yk$ if Y1, ... Yk are all nullable, or k = 0

then nullable[X] := true

for each i from 1 to k, each j from i + I to k

if Y1 ... Y(i-1) are all nullable or i = 1

then FIRST[X] := FIRST[X] union FIRST[Y(i)]

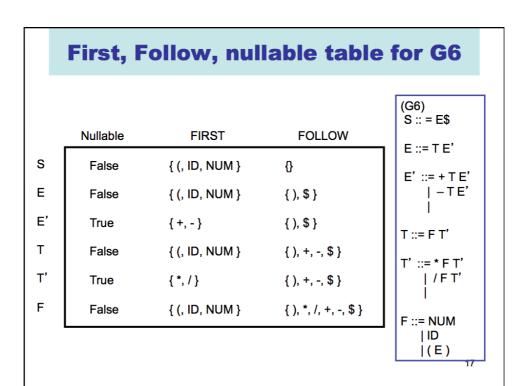
if Y(i+1) ... Yk are all nullable or if i = k

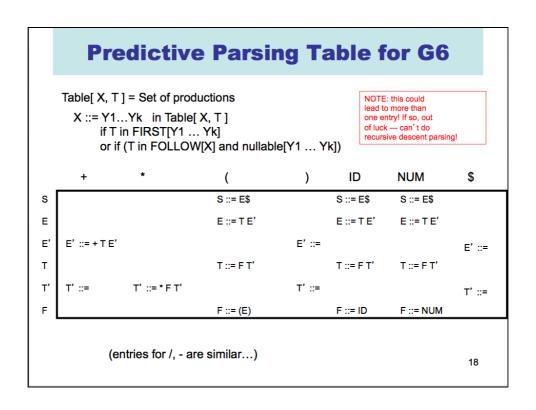
then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]

if Y(i+1) ... Y(j-1) are all nullable or i+1 = j

then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]

until there is no change





Left-most derivation is constructed by recursive descent

Left-most derivation

```
(G6)
S::=E$
E::=TE'
E'::=+TE'
|-TE'
|
T::=FT'
T'::=*FT'
|/FT'
|
F::=NUM
|ID
|(E)
```

```
S → E$

→ TE'$

→ FT' E'$

→ (E)T' E'$

→ (FT' E')T' E'$

→ (17 T' E')T' E'$

→ (17 T' E')T' E'$

→ (17 T F')T' E'$

→ (17 + T F')T' E'$

→ (17 + FT' E')T' E'$

→ (17 + 4 T' E')T' E'$

→ (17 + 4 P')T' E'$

→ (17 + 4 P' E')T' E'$
```

```
call S()
on '(' call E()
on '(' call T()
.l..
...
```

19

As a stack machine

```
S → E$

→ T E'$

→ F T' E'$

→ (E) T' E'$

→ (T E') T' E'$

→ (17 T' E') T' E'$

→ (17 T' E') T' E'$

→ (17 + T E') T' E'$

→ (17 + F T' E') T' E'$

→ (17 + 4 T' E') T' E'$

→ (17 + 4) T' E'$

→ (17 + 4) T' E'$

→ (17 + 4) * F T' E'$

→ (17 + 4) * (2 - 10) T' E'$

→ (17 + 4) * (2 - 10) E'$

→ (17 + 4) * (2 - 10)
```

```
E$
                      TE'$
                  FT' E'$
E)T' E'$
             TE')T'E'$
FT'E')T'E'$
T'E')T'E'$
(17
             E')T'E'$
TE')T'E'$
FT'E')T'E'$
T'E')T'E'$
(17
(17+
(17+
(17 + 4)
(17 + 4
                 E')T'E'$
T'E'$
(17 + 4)
(17 + 4)*
                   FT' E'$
...
(17+4)*(2-10) T'E'$
(17+4)*(2-10)
                        E'$
(17+4)*(2-10)
```

But wait! What if there are conflicts in the predictive parsing table?

	Nullable	FIRST	FOLLOW
S	false	{ c,d ,a}	{ }
Y	true	{ c }	{ c,d,a }
X	true	{ c,a }	{ c, a,d }
Y	true	{ c }	{ c,d,a

The resulting "predictive" table is not so predictive....

```
a c d

S {S::=XYS} {S::=XYS} (S::=XYS,S::=d})

Y {Y::=} {Y::=c} {Y::=}

X {X::=a, X::=Y} {X::=Y}
```

LL(1), LL(k), LR(0), LR(1), ...

- LL(k): (L)eft-to-right parse, (L)eft-most derivation, k-symbol lookahead. Based on looking at the next k tokens, an LL(k) parser must *predict* the next production. We have been looking at LL(1).
- LR(k): (L)eft-to-right parse, (R)ight-most derivation, k-symbol lookahead. Postpone production selection until the entire right-handside has been seen (and as many as k symbols beyond).
- LALR(1): A special subclass of LR(1).

34

Example

```
(G8)
S :: = S ; S | ID = E | print (L)
E ::= ID | NUM | E + E | (S, E)
L ::= E | L, E
```

To be consistent, I should write the following, but I won't...

(G8)

S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN

E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN

L ::= E | L COMMA E

35

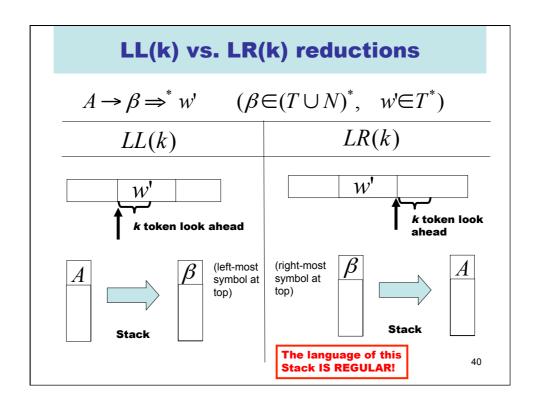
A right-most derivation ...

```
→ s; <u>s</u>
\rightarrow S; ID = E
\rightarrow S; ID = \overline{E} + \underline{E}
\rightarrow S; ID = E + (S, \underline{E})
\rightarrow S; ID = E + (S, <u>ID</u>)
\rightarrow S; ID = E + (\underline{S}, \overline{d})
\rightarrow S; ID = E + (ID = \underline{E}, d)
\Rightarrow S; ID = E + (ID = E + E, d)
\Rightarrow S; ID = E + (ID = E + NUM, d)
\rightarrow S; ID = E + (ID = E + \overline{6, d})
\rightarrow S; ID = E + (ID = NUM + 6, d)
\rightarrow S; ID = E + (\underline{ID} = \overline{5 + 6}, d)
\rightarrow S; ID = \underline{E} + (\overline{d} = 5 + 6, \overline{d})
\rightarrow S; ID = <u>ID</u> + (d = 5 + 6, d)
\rightarrow S; <u>ID</u> = c + (d = 5 + 6, d)
\Rightarrow <u>S</u>; b = c + (d = 5 + 6, d)
\rightarrow \overline{ID} = \underline{E}; b = c + (d = 5 + 6, d)
\rightarrow ID = NUM; b = c + (d = 5 + 6, d)
\rightarrow <u>ID</u> = 7; b = c + (d = 5 + 6, d)
\Rightarrow a = 7; b = c + (d = 5 + 6, d)
```

```
Now, turn it upside down ...
      \Rightarrow a = 7; b = c + (d = 5 + 6, d)
      \rightarrow ID = 7; b = c + (d = 5 + 6, d)
      \rightarrow ID = NUM; b = c + (d = 5 + 6, d)
      \rightarrow ID = E; b = c + (d = 5 + 6, d)
      \rightarrow S; b = c + (d = 5 + 6, d)
      \rightarrow S; ID = c + ( d = 5 + 6, d )
      \rightarrow S; ID = ID + (d = 5 + 6, d)
      \rightarrow S; ID = E + (d = 5 + 6, d)
      \rightarrow S; ID = E + (ID = 5 + 6, d)
      \rightarrow S; ID = E + (ID = NUM + 6, d)
      \rightarrow S; ID = E + ( ID = E + 6, d )
      \rightarrow S; ID = E + (ID = E + NUM, d)
      \rightarrow S; ID = E + (ID = E + E, d)
      \rightarrow S; ID = E + (ID = E, d)
      \rightarrow S; ID = E + (S, d)
      \rightarrow S; ID = E + (S, ID)
      \rightarrow S; ID = E + (S, E)
      \rightarrow S; ID = E + E
      \rightarrow S; ID = E
      \rightarrow S; S
                                                                          37
         S
```

Now, slice	e it down the middle
TD	a = 7; b = c + (d = 5 + 6, d) = 7; b = c + (d = 5 + 6, d)
ID = NUM	; b = c + (d = 5 + 6, d) ; b = c + (d = 5 + 6, d)
ID = E	; b = c + (d = 5 + 6, d)
S	; b = c + (d = 5 + 6, d)
S; ID	= c + (d = 5 + 6, d)
S; ID = ID	+ (d = 5 + 6, d)
S ; ID = E	+ (d = 5 + 6, d)
S ; ID = E + (ID	= 5 + 6, d)
S ; ID = E + (ID = NUM)	+ 6, d)
S ; ID = E + (ID = E	+ 6, d)
S ; ID = E + (ID = E + NUM)	, d)
S; ID = E + (ID = E + E	, d)
S; ID = E + (ID = E	, d)
S; ID = E + (S	, d)
S; ID = E + (S, ID)
S; ID = E + (S, E)	
S ; ID = E + E	
S ; ID = E S ; S	
S ; S S	
A stack of terminals and	The rest of the input string
non-terminals	38

```
Now, add some actions. s = SHIFT, r = REDUCE
                           a = 7; b = c + (d = 5 + 6, d)
ID
                             = 7; b = c + (d = 5 + 6, d) | s, s
ID = NUM
                                ; b = c + (d = 5 + 6, d) r E ::= NUM
ID = E
                                ; b = c + (d = 5 + 6, d) r S ::= ID = E
S
                                ; b = c + (d = 5 + 6, d) | s, s
S; ID
                                    = c + (d = 5 + 6, d) | s, s
S; ID = ID
                                        + (d = 5 + 6, d) r E ::= ID
S ; ID = E
                                        + (d = 5 + 6, d) | s, s, s
S ; ID = E + ( ID
                                             = 5 + 6, d ) s, s
S ; ID = E + ( ID = NUM
S; ID = E + ( ID = E
                                                 + 6, d) r E ::= NUM
S; ID = E + ( ID = E + NUM
                                                 + 6, d) s, s
S; ID = E + ( ID = E + E
                                                    , d ) | r E ::= NUM
S; ID = E + ( ID = E
                                                    , d) | r E ::= E+E, s, s
S; ID = E + (S
                                                    , d) r S ::= ID = E
S; ID = E + (S, ID
                                                        ) R E::= ID
S; ID = E + (S, E)
S ; ID = E + E
                                                          s, r E ::= (S, E)
S ; ID = E
                                                          r E ::= E + E
S;S
                                                          r S ::= ID = E
S
                                                          r S ::= S ; S
            SHIFT = LEX + move token to stack
                                                             ACTIONS
```



Q: How do we know when to shift and when to reduce? A: Build a FSA from LR(0) Items!

If

is a production, then

$$X := \alpha \cdot \beta$$

is an LR(0) item.

$$A := \cdot (A)$$

$$A := (\cdot A)$$

LR(0) items indicate what is on the stack (to the left of the •) and what is still in the input stream (to the right of the •)

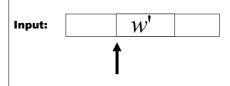
41

LR(k) states (non-deterministic)

The state

$$(A \rightarrow \alpha \bullet \beta, \ a_1 a_2 \cdots a_k)$$

should represent this situation:



Stack:

(right-most symbol at top)

with

$$\beta a_1 a_2 \cdots a_k \Rightarrow^* w'$$

Key idea behind LR(0) items

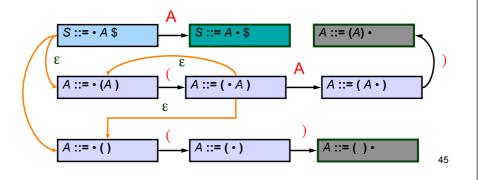
- If the "current state" contains the item A ::= α • c β and the current symbol in the input buffer is c
 - the state prompts parser to perform a shift action
 - next state will contain A ::= α c β
- If the "state" contains the item $A := \alpha$
 - the state prompts parser to perform a reduce action
- If the "state" contains the item S ::= α \$
 and the input buffer is empty
 - the state prompts parser to accept
- But How about A ::= $\alpha \cdot X \beta$ where X is a nonterminal?

43

The NFA for LR(0) items

- The transition of LR(0) items can be represented by an NFA, in which
 - 1. each LR(0) item is a state,
 - 2. there is a transition from item A ::= $\alpha \cdot c \beta$ to item A ::= $\alpha c \cdot \beta$ with label c, where c is a terminal symbol
 - 3. there is an ε-transition from item A ::= $\alpha \cdot X \beta$ to X ::= $\cdot \gamma$, where X is a non-terminal
 - -4. S := A\$ is the start state
 - 5. A ::= α is a final state.

Example NFA for Items



The DFA from LR(0) items

- After the NFA for LR(0) is constructed, the resulting DFA for LR(0) parsing can be obtained by the usual NFA2DFA construction.
- we thus require
 - ε-closure (I)
 - move(S, a)

Fixed Point Algorithm for Closure(I)

- Every item in I is also an item in Closure(I)
- If A ::= $\alpha \cdot B \beta$ is in Closure(I) and B ::= $\cdot \gamma$ is an item, then add B ::= $\cdot \gamma$ to Closure(I)
- Repeat until no more new items can be added to Closure(I)

Examples of Closure

Closure(
$$\{A := (\cdot A)\}$$
) =
$$\begin{cases}
A := (\cdot A) \\
A := \cdot (A) \\
A := \cdot ()
\end{cases}$$

• closure({S ::= • A \$})

$$\begin{cases}
S ::= • A $ \\
A ::= • (A) \\
A ::= • ()
\end{cases}$$

47

Goto() of a set of items

- Goto finds the new state after consuming a grammar symbol while in the current state
- Algorithm for Goto(I, X) where I is a set of items and X is a non-terminal

Goto(I, X) = Closure(
$$\{ A := \alpha X \cdot \beta \mid A := \alpha \cdot X \beta \text{ in } I \}$$
)

 goto is the new set obtained by "moving the dot" over X

Examples of Goto

• Goto ({A ::= •(A)}, ()

$$\begin{cases}
A ::= (\cdot A) \\
A ::= \cdot (A) \\
A ::= \cdot ()
\end{cases}$$

• Goto ({A ::= (• A)}, A) {A ::= (A •)

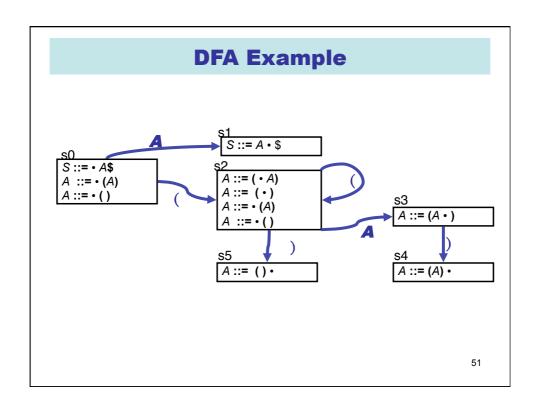
$$A := (A \cdot)$$

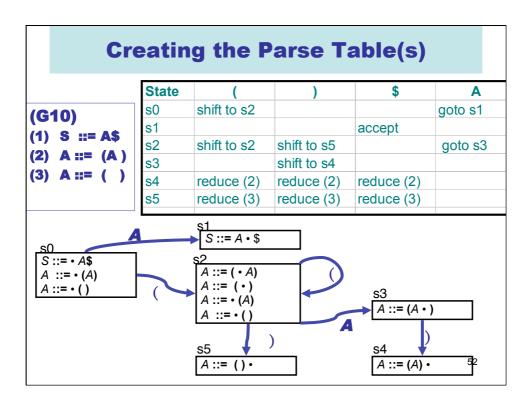
S ::= • A \$ S ::= A • \$ $A ::= \bullet (A)$ $A := (\cdot A)$ $A := (A \cdot)$ $A := (A) \cdot$ $A ::= \cdot ()$ $A := (\cdot)$

A ::= (

Building the DFA states

- Essentially the usual NFA2DFA construction!!
- · Let A be the start symbol and S a new start symbol.
- Create a new rule S ::= A \$
- Create the first state to be Closure({ S ::= A \$})
- Pick a state I
 - for each item A ::= $\alpha \cdot X \beta$ in I
 - find Goto(I, X)
 - if Goto(I, X) is not already a state, make one
 - Add an edge X from state I to Goto(I, X) state
- Repeat until no more additions possible





Parsing with an LR Table

Use table and top-of-stack and input symbol to get action:

If action is

shift sn: advance input one token,

push sn on stack

reduce X ::= α : pop stack 2* $|\alpha|$ times (grammar symbols

are paired with states). In the state

now on top of stack, use goto table to get next

state sn,

push it on top of stack

accept: stop and accept

error: weep (actually, produce a good error

message)

53

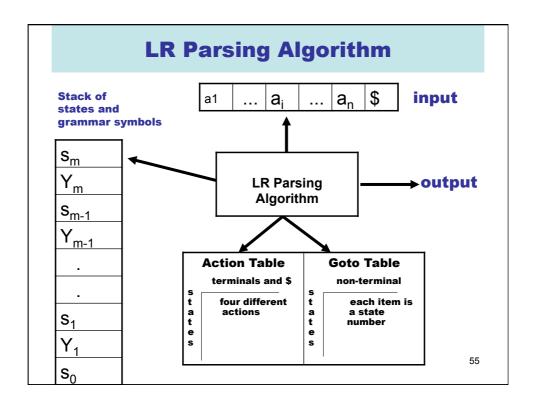
Parsing, again...

4			١
U	U	v,	١.

- (1) S ::= A\$
- (2) A ::= (A)
- (3) A ::= ()

		ACTION		Goto
State	()	\$	Α
s0	shift to s2			goto s1
s0 s1 s2 s3 s4 s5			accept	
s2	shift to s2	shift to s5		goto s3
s3		shift to s4		
s4	reduce (2)	reduce (2)	reduce (2)	
s5	reduce (3)	reduce (3)	reduce (3)	

s0	(())\$	shift s2
s0 (s2	())\$	shift s2
s0 (s2 (s2))\$	shift s5
s0 (s2 (s2) s5)\$	reduce A ::= ()
s0 (s2 A)\$	goto s3
s0 (s2 A s3)\$	shift s4
s0 (s2 A s3) s4	\$	reduce A::= (A)
s0 A	\$	goto s1
s0 A s1	\$	ACCEPT!



Problem With LR(0) Parsing

- No lookahead
- Vulnerable to unnecessary conflicts
 - Shift/Reduce Conflicts (may reduce too soon in some cases)
 - Reduce/Reduce Conflicts
- Solutions:
 - LR(1) parsing systematic lookahead

LR(1) Items

• An LR(1) item is a pair:

```
(X := \alpha . \beta, a)
```

- $X := \alpha \beta$ is a production
- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- $[X := \alpha \cdot \beta, a]$ describes a context of the parser
 - We are trying to find an X followed by an a, and
 - We have (at least) α already on top of the stack
 - Thus we need to see next a prefix derived from βa

57

The Closure Operation

• Need to modify closure operation:.

```
Closure(Items) = repeat for each [X ::= \alpha . Y\beta, a] in Items for each production Y ::= \gamma for each b in First(\betaa) add [Y ::= .\gamma, b] to Items until Items is unchanged
```

Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- The start state contains (S' ::= .S\$, dummy)
- A state that contains [X ::= α., b] is labeled with "reduce with X ::= α on lookahead b"
- · And now the transitions ...

59

The DFA Transitions

- A state s that contains [X ::= α_•Yβ, b] has a transition labeled y to the state obtained from Transition(s, Y)
 - Y can be a terminal or a non-terminal

```
Transition(s, Y)

Items = {}

for each [X ::= \alpha.Y\beta, b] in s

add [X! \alphaY.\beta, b] to Items

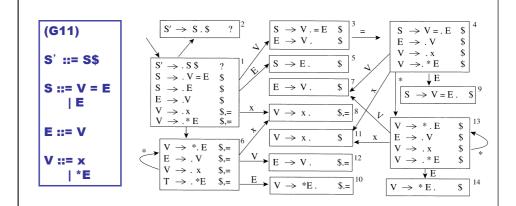
return Closure(Items)
```

LR(1)-the parse table

- · Shift and goto as before
- Reduce
 - state I with item (A $\rightarrow \alpha$., z) gives a reduce A $\rightarrow \alpha$ if z is the next character in the input.
- LR(1)-parse tables are very big

61

LR(1)-DFA



From Andrew Appel, "Modern Compiler Implementation in Java" page 65

LR(1)-parse table

	х	*	=	\$	S	Е	V		х	*	=	\$	S	Е	V
1	s8	s6			g2	g5	g3	8			r4	r4			
2				acc				9				r1			
3			s4	r3				10			r5	r5			
4	s11	s13				g9	g7	11				r4			
5				r2				12			r3	r3			
6	s8	s6				g10	g12	13	s11	s13				g14	g7
7				r3				14				r5			

63

LALR States

• Consider for example the LR(1) states

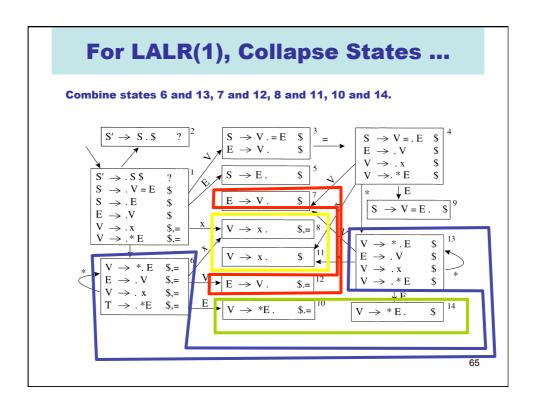
$$\{ [X ::= \alpha. , a], [Y ::= \beta. , c] \}$$

$$\{ [X ::= \alpha. , b], [Y ::= \beta. , d] \}$$

 They have the same <u>core</u> and can be merged to the state

$$\{[X ::= \alpha., a/b], [Y ::= \beta., c/d]\}$$

- These are called LALR(1) states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)



LALR(1)-parse-table Ε S Х s8 s6 g5 g3 g2 2 acc 3 r3 4 s8 s6 g7 5 6 s8 s6 g10 g7 r3 r3 8 r4 r4 9 r1 10 r5 66

LALR vs. LR Parsing

- LALR languages are not "natural"
 - They are an efficiency hack on LR languages
- You may see claims that any reasonable programming language has a LALR(1) grammar, {Arguably this is done by defining languages without an LALR(1) grammar as unreasonable © }.
- In any case, LALR(1) has become a standard for programming languages and for parser generators, in spite of its apparent complexity.