
Unix Tools

Markus Kuhn

Original notes by A C Norman

Part Ib

1 Introduction

This course is called “Unix Tools”, and this is because the various support utilities
that it discusses originated with Unix and fit in with a philosophy that was made
explicit from the early days of that operating system. It should however be noted
that most of the particular programs or tools mentioned have been found sufficiently
useful by generations of programmers that versions have been ported to other oper-
ating systems, notably Microsoft Windows, and so whatever platform you use now
or expect to use in the future there is something here that may prove relevant to
you. Even when running under Windows it seems proper to refer to things as “Unix”
tools, both for historical reasons and because the style of interface that these tools
provide contrasts quite strongly with that seen in (say) the Microsoft Visual Studio1.

This course is short and it is also unusual in that no questions on it will appear
on the examination papers at the end of the year. These two facts may lead to
the impression that the department considers the material covered unimportant
or optional. Any such impression is ill-founded. It is anticipated that techniques
mentioned during this course will be of relevance in later practical work: specifically
both the Group Project this year and your individual project next year. Familiarity
with and competent use of standard tools and techniques can make your work on
these projects significantly more efficient, and all assessment of practical work are
entitled to assume this fluency when judging whether the amount of work done was
more or less than could be reasonably expected of you.

These printed lecture notes reflect mostly the content of the original course given
by Arthur Norman with some additions and updates from the lecturers who have
taught it since then. They still complement the course very nicely but do not aim
at covering all topics discussed in the course. They should therefore be studied in
addition to the course presentation slides that are available on

http://www.cl.cam.ac.uk/teaching/current/UnixTools/

This Web page also has links to further material such as manuals for some of the
discussed tools in an easy to print format as well as links to related online resources.

I believe that your practical skills will only develop with practical experience, so I
would urge you all to try using each of the tools and techniques mentioned here. I
will generally only explain the simple ways of using each facility, and as you gain
confidence it may be that you will benefit if you deepen your understanding by
reading the man pages or other documentation. Many of the commands will display
a concise ‘reminder’ of their usage by simply invoking them with the argument -h or
--help. “Info pages” provided for GNU tools can also be useful, and can be viewed
with the info command or in emacs by invoking Ctrl-h i.

Over the past decade, there have been two attempts to standardise a minimal com-
mon set of classic Unix tools, including the shell. One is the IEEE 1003.2 POSIX
Shell and Utilities specification, the other is the Open Group’s Single Unix Specifi-
cation. In late 2001, both these standards have finally been merged into a single one,

1The environment within which one influential vendor’s set of native Windows development
tools reside.

2

which can now be freely accessed online as the Single Unix Specification, Version 3
at http://www.unix.org/, which is also available in printed form in the Computer
Laboratory’s library (ST.8.7).

A thread I hope will run through my presentation is that the tools discussed are
not totally arbitrary in their design (despite some of the initial impressions that
they give). There is at least a part of their construction that concerns itself with
compatibility of ideas from one tool to the next and of exploitation of powerful
and general computer science fundamentals such as regular expressions. The “Unix
philosophy” that I mentioned earlier is that (ideally) the world would contain a
number of tool components, each addressing just one problem. Each individual
tool would then be small, easy to learn but completely general in its treatment of
the limited class of problem that it addressed. The Unix approach is then to solve
typically messy real-world problems by combining use of several such basic tools. In
this spirit there will be a small number of major ideas underlying all the material
covered here:

1. Complex tasks are often best solved by linking together several existing pro-
grams rather than be re-inventing every possible low-level detail of the wheel
over again;

2. Regular expressions, seen in the Part Ia course as a mathematical abstraction
of the patterns that finite-state machines can process, generalise to provide
amazingly powerful and flexible (if sometimes obscure-looking) capabilities;

3. There should be a smooth transition between the tasks you perform one at a
time interactively and those that need real programs written to perform them.
The Unix tool tradition is particularly strong on helping to automate tasks of
medium complexity;

4. The first Unix tools originated around 30 years ago at AT&T Bell Labs when
the main input/output devices available were slow and noisy teletype termi-
nals. At the time, the most convenient software was the one that could be
used with the fewest keystrokes and that kept the output short and concise.
I/O facilities have become far more sophisticated since then, but the Unix
tradition of compact text command notations remained highly popular among
expert users, not only because it is well suited for automating tasks. The
mouse/menu interfaces pioneered by Xerox and Apple are utterly admirable
for making editors easy to use for the untutored or casual user. They are also
helpful when your main concern is the visual appearance of a page of text,
since they can make it easy to select a block of text and change its attributes.
But for very many other tasks a keyboard based (vermin free?) approach can
let a short sequence of keystrokes achieve what would otherwise require much
mouse movement and the frequent and distracting change of focus between
mouse and keyboard. The learning effort required pays off as you are able to
get your work done faster.

The topics covered here are somewhat inter-related and so a strictly linear and
compartmentalised coverage would not be satisfactory. I will thus often refer back
to concepts sketched earlier on and flesh out additional details in examples given

3

later in the course. In four lectures it must be clear that I can not cover all of the
facilities that Unix provides, and the language perl that I discuss towards the end
could of itself justify a full-length lecture course and a host of associated practical
classes. You must thus be aware that this course is going to be superficial, and
those of you who already count yourselves as experts are liable to find many of your
favourite idioms are not covered. However the lectures can (I hope) still form a
good starting point for those who are relative Unix beginners, while these notes can
be a reminder of what is available, a modest source of cook-book examples and a
reminder of which parts of the full documentation you might want to read when you
have some spare time.

2 The “Unix shell”

These first few sections will recapitulate on material that you will (mostly) have
come across in the introductions to Unix you had at the start of the Part Ia Java
course, or that were mentioned in part of the Operating Systems thread. Repetition
in these notes will help keep this course self-contained, although the lectures will
skim over this information very rapidly. See [1] for a tolerably concise expansion of
what I have included here.

Part of the Unix design involved making all the functionality supported by the
operating system available as function calls, and making as many of these calls as
possible available to all users. In other words a deliberate attempt was made to
arrange that Unix security only needed a very small set of operations to be run as
privileged system tasks. Partly as a demonstration of this, the system ensured that
the shell could be written as an ordinary user-mode program. The shell comprises
the fundamental interface the user sees to Unix: it is the component of Unix that
lets you type in commands which it then executes for you. Many other operating
systems give their shells private and special ways of talking to the inner parts of the
operating system so that it is not reasonable for a user to implement a replacement.

Two consequences have arisen. The first is that there are many different Unix shells
available. This can be a cause of significant confusion! The second is that good
ideas originally implemented in one of these shells have eventually found their way
(often in slightly different form) into the others. The result is that the major Unix
shells now have a very substantial range of capabilities, and the way in which these
are activated has benefited from a great deal of experimentation and field-testing.
The original Unix shell is known as the Bourne Shell (after Steve Bourne, who after
leaving Cambridge went to Bell Laboratories where his enthusiasm for Algol 68
had its effects). The major incompatible shell you may come across is the C shell,
where the “C” is both to indicate that its syntax is inspired by C, and also (given
a Unix tradition of horrible puns) because one expects to find shells on beaches, so
a C-shell is an obvious thing to talk about. There have been many successors to
these two shells. The one that you are (strongly) encouraged to use here is basically
upwards compatible with the Bourne Shell, and is know as bash, the Bo(u)rn(e)-
Again SHell. bash is part of the excellent GNU reimplementation of the Unix tools,
and is available on almost every platform imaginable. Anyone thinking of using a

4

C-shell derivative is advised to read Tom Christiansen’s article “Csh Programming
Considered Harmful” [5] first.

Whenever you are typing in a command at the usual Unix command-prompt you
are talking to your current shell. Also if you put some text in a file and set the file
to have “executable” status (eg by saying chmod +x filename) then entering the
name of the file will get the shell to obey the sequence of commands contained. In
such case it is considered standard and polite to make the first line of the file contain
the incantation

#!/bin/sh

where /bin/sh is the full file-name of the shell you are intending to use. The “#”
mark makes this initial line a comment, and the following “!” and the fact that it
is the very first thing in the file mark it as a special comment used to indicate what
should be used to process the file. Some of the examples given here will be most
readily tested interactively while others will be best put into files while you perfect
the lengthy and messy runes.

Some small and common things that you may have thought of as commands are in
fact built into the shell (for instance cd2), particularly those that change the state
of the shell. But the most interesting shell features relate to ways to run other
programs and provide them with parameters and input data.

3 Streams, redirection, pipes

Central to the Unix design is the idea of a stream of bytes. Streams are the founda-
tion for input and output, and at one (fairly low) level they are identified by simple
small integer identifiers. When a program is started the shell provides it with three
standard streams, with numeric identities 0, 1 and 2. The first of these is standard
input, and programs tend to read data from there if they have nothing better to
do. The second is a place for standard output to be sent, while the third is intended
for error messages. If you start a program without giving the shell more explicit
information it will connect your keyboard so it provides data for the standard input,
and it will direct both of the default output streams to your screen.

These standard streams can be redirected so that they either access the filing system
or provide communication between pairs of programs. The importance (for today!)
of file redirection is that it means that a program can be written so that it just reads
from its standard input and writes to its standard output. Using redirection the shell
can then cause it to take data from one file and write its results to another. The
program itself does not have to bother with any file-names or distinctions between
files and the keyboard or screen.

my_program < input_data.file > output_data.file

2For the purposes of this course I am going to suppose that some of the basic Unix commands
are already familiar. But the suggested textbook will give brief explanations even if I do happen
to mention something that you have not seen or that you have forgotten about.

5

If >> is used as a redirection operator the new data is appended to the output file.
This can be very useful when executing a sequence of commands:

#!/bin/sh

echo "Test run starting" > log.file

date >> log.file

my_program >> log.file

echo "end of test" >> log.file

Two programs can be linked so that the (standard) output from the first is fed in
as the (standard) input to the second. The fact that this is so very easy to arrange
encourages a style where you collect a whole bunch of small utilities each of which
performs just one simple task, and you then chain them together as pipes to perform
some more elaborate process. I will use this in quite a number of the examples given
later in these notes. One useful program to put in a pipe is tee which passes material
straight from its input to output, but also diverts a copy to a log-file. The following
(not very useful) example uses cat to copy an input file to its standard output. tee
then captures a copy of this to a log file, and passes the data on to my program for
whatever processing is needed.

cat input.file | tee log.file | my_program

A further use of pipes and tee is as follows where the standard output from a test
run is permitted to appear on the screen but a copy is also diverted to a log file in
case detailed examination is called for at a later date. The output is piped through
more to make it possible to read it all even when it is too long to fit on a single screen.
The Unix enthusiast would point out the power of pipes where the functionalities
of both tee and more are being combined without the need for a messy composite
utility.

my_second_program | tee log.file | more

Especially when debugging code it is often important to be able to redirect the error
output as well as the regular one. This is one of the areas where the exact syntax to
be used depends on which shell you are using, and so my use of the Bourne Shell or
one of its derivatives does matter. For such shells the form 2> error.file redirects
the standard error file (descriptor number 2) so that material is sent to the named
file.

Its also sometimes useful to be able to redirect standard error to standard output,
so you feed the combined stream into another program. Again, the exact syntax
is shell specific, but the following works for bash and is quite useful when you’re
compiling a program with lots of errors:

make my_program 2>&1 | more

When redirecting standard output and standard error to a file, the order of the
redirections is reversed in some sense. In other words, we write

6

make my_program >log 2>&1

so that the standard output file descriptor is duplicated after being redirected,
whereas if we wanted to do the same thing at the beginning of a pipeline we would
write

make my_program 2>&1 | ...

This is because the redirection of the standard output implied by the pipe separa-
tor is performed before any redirection specified in the commands composing the
pipeline.

Likewise, in a shell script it is sometime useful to be able to echo messages to
standard error:

echo 'Arghh! It is all broken!' 1>&2

A final common redirection feature known as ‘Here Documents’ is activated using
<<. This makes it possible to embed an input document within a shell script file.
After the doubled angle bracket you put some word, and the standard input to the
command activated will then be all lines form the command input source up to one
that exactly matches this word:

#!/bin/sh

cat << XXX > output.file

line 1 to go in the new file

line 2 to go in the new file

XXX

4 Command-line expansion

When the shell is about to process a command it first performs some expansion on
it. It will interpret some sequences of characters as patterns, and replace them with
a list of all the names of files that match those patterns. As a special and perhaps
common case the single character “*” is a pattern that matches the names of all3

files in the current directory. For these purposes a sub-directory is just another
file. Because this wild-card expansion is performed by the shell before a command
is executed its effects are available whatever command you are using. Perhaps a
convenient one to try is echo which just prints back its parameters to you:

echo *

will display a list of the files in the current directory. Of course to achieve this effect
you would normally use ls which lays out the list neatly and provides lots of jolly
options, but use of a pattern means that you can send the list of file-names to any
program, not just to echo. For now the important components of a pattern are

3Well all except for the “hidden” file-names that start with a dot . . .

7

1. Most characters stand literally for themselves;

2. An asterisk (*) matches an arbitrary string of characters. In file-name expan-
sion file-names that start with a dot (.) are treated specially and the wild-card
asterisk will not match that initial dot;

3. A question mark (?) matches any single character, again except for an initial
dot;

4. A backslash (\) causes the following character to lose any special meaning, and
so if you need a pattern that matches against an asterisk or question mark (or
indeed a backslash) one may be called for;

5. Quotation marks (either single or double) can also be used to protect special
characters. Note that as well as * and ? the Unix shell may be treating >

and all sort of other punctuation marks specially, so in case of doubt use
quotation marks or backslash escapes fairly liberally! Inside single quotation
marks (' or ’), all characters loose their special meaning, whereas inside double
quotation marks (") the characters \, $, and ` keep their special rôles.

In addition to file-name expansion the shell expands commands by permitting refer-
ence to environment variables. This is indicated by writing a variable name preceded
by a dollar sign ($). It is also legal to write a variable reference as ${name} where
the braces provide a clear way of indicating where the variable name ends. There
are liable to be quite a few variables predefined for you, some set up by the shell
itself, some by scripts that are run for you when you log on.

To set a new variable you may write

variable_name=value ; export variable_name

where the use of export causes the variable to be visible not only within the current
shell but also to all programs called by it. A shorthand form of the above is:

export variable_name=value

The built-in command set displays all variables and their values accessible in the
current shell. The command printenv on the other hand displays only the exported
environment variables that can be seen by any program called from the current shell.

A slightly more concrete example shows that with a lot of shell variables set up,
the actual commands that you issue may turn out to be almost entirely built out of
references to variables.

LANGUAGE=java

COMPILER=javac

OPTIONS=

SOURCE=hello_world

$COMPILER $OPTIONS $SOURCE.$LANGUAGE

8

Especially in script files there is a great deal to be said for establishing variables to
hold the names of compilers that you use and of the options that must be passed to
them, since it makes everything much easier to alter if you move your programs to a
slightly different environment later on. For instance on various Unix machines that
I have used the C compiler is called sometimes cc, sometimes gcc, and sometimes
c89, maybe ncc and even /opt/EA/SUNWspro/bin/cc! Changing just one setting
of a variable to allow for this is neater than making extensive edits throughout long
scripts.

A rather different but convenient use of variables is to hold the names of directories.
If you often work within a directory with a rather long name, say for example
/home/acn1/Project/version-1.0.3/source, then you might set a variable (say
SRC) to that long string. Then you can use $SRC freely on the command line to
allow you to select your important directory or refer to files within it with much less
typing that you might otherwise need. An additional advantage of this strategy is
that when you move on to version 1.0.4 you can just change the one place where
you define this variable and now you will naturally access the newer location.

Another key-stroke saving tip is to define shell functions that alias other commands
(or sequences of commands). For example:

function m () { more }

function ll () { ls -al }

The same effect could be achieved by creating shell scripts and placing them on the
search PATH, but defining a function is more efficient.

Within a shell script $1, $2, . . . refer to arguments passed when the script was
started, $* expands to a list of all the arguments, while $# is replaced by the number
of arguments provided. Consider a file called demo that contains

#!/bin/sh

echo Start of $0, called with $# arguments

echo All args: $*

echo Arg 1 = $1

echo Arg 2 = $2

Let's put another comment here.

which also illustrated that “argument zero” will be taken to refer to the name of the
script that is being executed. A use of the above script might be

demo hah | what I typed in

Start ./demo with 1 args | output from script

All args: hah

Arg 1 = hah

Arg 2 = | $2 => empty string

Redirection allows one to send the output from a command to the standard input
of another. Sometimes you may want to incorporate the (standard) output from
one command as part of another command. This is achieved by writing the first

9

command within $(. . .) or “back-quotes” (‘. . . ‘), which appear in many fonts as
grave accents (`. . . `). A sensible example of this in use will be shown later on, but
for now I will illustrate it with

echo "Today is $(date -I)."

Today is 2007-10-11.

5 find and grep

One of the expectations that comes with Unix is that it should be easy to specify that
operations should be performed upon multiple files by issuing just one command.
File-name expansion as described earlier provides the simplest way of listing a bunch
of files to be processed: sometimes it is useful to have rather more subtle selection
and filtering procedures. The tool find is used when this should be based on the
file’s name and attributes (eg date of last update), while grep inspects the contents
of files.

5.1 find

The find command takes two groups of arguments. The first few arguments must
be path-names (ie typically the names of directories), and the subsequent ones are
conditions to apply when searching through the directories mentioned. The condi-
tions that can be used include tests on the name, creation and modification date,
access permissions and owner of files. A special “condition” -print causes the name
of the file currently being processed4 to be sent to the standard output, and it will
often be shown as the final item on the command-line. Unless combined using -o

which stands for OR all previous conditions must be satisfied if the -print is to be
activated. Conditions may be negated using !.

The conditions -atime, -mtime and -ctime test the access, modification or creation
times of files. They are followed by an integer. If written unsigned they accept files
exactly that many days old. If it is written with a + sign they accept files older
than that, and a - asks for files younger. A condition -name is followed by a pattern
much like those previously seen in file-name expansion, and checks the name of the
file. You will normally need to put a backslash before any special characters in
the pattern. There are lots of other options, including ones to execute arbitrary
programs whenever a file is accepted, but those of you who want to use them can
read the full documentation.

Plausible uses are illustrated in the following examples:

1. List all files that have not been accessed for at least 150 days. These are
obvious candidates for moving to an archive, or compressing or even deleting!
Note that by searching in the current directory (.) even files whose names
start with a dot will be listed here.

4Some implementations of find have an implicit -print if no other action is specified, but do
not rely on that even if the one that you usually use does it

10

find . -atime +150 -print

2. List files that have been created during the last week. File-name expansion
means that the * is turned into a list of all files in the current directory apart
from those whose name starts with dot. Reminding oneself of recently created
or modified files may be useful when you want to consider what to back up.

find * -ctime -7 -print

3. Delete all files in the current directory or any sub-directory thereof if their
name end in “.old”. The -i flag to the rm command gets it to ask the
user for confirmation in each case, which makes this command a little safer
to issue. Observe the back-quotes to get the output from find presented as
command-line arguments to the rm command.

rm -i `find . -name *.old -print`

Alternatively the xargs command could be used to build the call to rm. This
command builds a command from an initial command name together with
whatever it finds on its standard input, and works better than the previous
scheme when there are a very large number of arguments to be passed5:

find . -name *.old -print | xargs rm -i

The alternative

find . -name *.old -exec rm -i {} \;

calls the command rm -i individually for each file found, which is far less
efficient in this particular example but useful for calling programs other than
rm that can handle only one file-name parameters at a time. The {} marks
where the file name will be inserted and the semicolon marks the end of the
-exec “condition”.

4. Search the current directory and subdirectories for all entries that are files
(excluding directories), and that have the ‘other user’ execute permission bit
set.

find . -type f -a -perm -001 -print

5. List any files in my program directory that are empty and whose name does
not start with a tmp.

find program -size 0 ! -name tmp* -print

find is obviously valuable as an interactive tool, perhaps especially for helping keep
your file-space tidy. It is also a valuable building-block in scripts.

5Specifically when you issue an ordinary command, including via the backquote construction,
there may be a limit on the length of the command-line that can be handled. xargs goes to some
trouble to invoke programs properly even when they are to be passed utterly huge numbers of
arguments.

11

5.2 grep

grep is the first tool that I will describe here that makes serious use of the Unix
interpretation of regular expressions. Its use is

grep <options> <regular-expression> <file(s)>

where the options may include -i to make searches case insensitive or -c to make
it just count the number of matches found in each file. Normally grep searches
through all the files indicated and displays each line that contains a match for the
given regular expression. The option -l gets you just a list of the names of files
within which there are matches. The sense of the matching can be inverted with
the -v option.

You need to be aware that there are related commands called egrep and fgrep that
support different degrees of generality in the pattern matching. Furthermore on some
computers you will find that the program invoked by the grep command has either
more or less capability than is mentioned here. This all arises because matching
against very general regular expressions can be an extremely expensive process so
the early Unix tool-builders decided to provide three different search engines for
trivial (fgrep), typical (grep) and ambitious (egrep) uses. In describing the regular
expression formats that are available I will mark ones that need egrep with an (†).
Given that todays computers are pretty fast you might like to standardise on using
egrep to reduce your worry on this front.

All the real interest and cleverness with grep comes in the regular expressions that
it uses. You will recall the rather spartan definition of a regular expression used
in the Part Ia course that introduced them. Those provided everything that was
actually needed to describe any regular language, but in many realistic cases there
is a very great benefit in using additional short-cuts. The following are the more
important of the constructs supported by grep, and as we will see later most of
them are also used with sed and perl as well as various other Unix-inspired tools.

a,b,. . . In general characters in a regular expression stand for themselves. If
one of the special characters mentioned below is needed as an ordinary literal
that can be arranged by sticking a backslash in front of it. Note then (of
course) that to get this backslash through to where grep will find it you may
need either quote marks or a yet further backslash, and things can start to
look messy!

A B Concatenating regular expressions works in the obvious manner. An
effect is that strings of literal characters can be given and match words in
much the way you might expect;

(A) (†) Where necessary you may use parentheses to group sub-parts of a
complicated expression;

A | B (†) Alternation is written using a vertical bar, which may be read as OR;

A* The star operator applies to the previous character or bracketed ex-
pression, and matches zero or more instances of it;

12

A+ (†) Much like the star operator, but accepts one or more instances of
things that match the given pattern;

A? (†) Zero or one matches for the given item;

A\{n,m\} From n to m repetitions. Amazingly this construct is only guaranteed
to be available in grep and for egrep you may be able to achieve the same effect
with a pattern that omits the backslashes. This is a natural generalisation of
the more common cases that use *, + and ?.

[a-z] This matches a single character, which must be one of the ones listed
within the brackets. Ranges of characters are shown with a hyphen. If you
put a hyphen or close (square) bracket as the very first character then it is
treated as a literal, not as part of the syntax of the construct. The mark “^”
can be used at the start of a pattern to negate the sense of a match;

. A dot matches any single character except a newline. Thus .*

matches any string of characters not including newlines;

^ and $ Normally patterns are looked for anywhere within a source line. If
you put a ^ at the start of an expression it will only match at the start of a
line, while a $ at the end ensures that matches are only accepted at the end
of a line. Use both if you want to match a whole line exactly;

\< and \> These allow you to insist that a certain place within your pattern
matches the start or end of a word. This facility is only supported in some
implementations of grep.

Again I think that the possibilities are best explored via some examples. Firstly I
will give just regular expressions, and then I will build them into complete commands
showing grep in a potentially useful context:

1. A pattern that matches words that start with a capital letter but where the
rest of the characters (if any) are lower case letters and digits or underscores

[A-Z][a-z0-9_]*

2. The string “#include at the start of a line, apart from possible leading blanks

^ *#include

3. A line consisting of just the single word END

^END$

4. A line with at least two equals signs on it with at least one character between
them

=.+=

13

5. Find which file (and which line within it) the string class LostIt is in, given
that it is either in the current directory or in one called extras

grep 'class LostIt' *.java extras/*.java

6. Count the number of lines on which the word if occurs in each file whose
name is of the form *.txt.

grep -c "\<if\>" *.txt

The output in this case is a list showing each file-name, followed by a colon
and then the count of the number of lines which contain the given string.
The use of \<..\> means that if embedded within a longer word will not be
recognised.

7. As above, but then use grep again on the output to select out the lines that
end with :0, ie those which give the names of files that do not contain the word
if. This also illustrates that if no files are specified grep scans the standard
input.

grep -c "\<if\>" *.txt | grep :0\$

8. Start the editor passing it the names of all your source files that mention
some variable, presumably because you want to review or change just those
ones. You could obviously use the same sort of construct to print out just
those files, or perform any other plausible operation on them.

emacs `grep -l some_variable *.java`

Note that grep has its own idea of what a “word” is, and so in some circumstances
you may want to write a more elaborate pattern to cope with different syntax.

Regular expressions that look only at individual lines do not provide a sufficiently
general way of describing patterns to allow you to do real parsing of programming
languages, and as present in grep they do not even make it easy to distinguish
between the body of your program, comments and the contents of strings. However
with a modest amount of ingenuity they can often let you specify things well enough
that you can search for particular constructions that are interesting to you. Some
people may even go to the extreme of laying out their code in stylised manners to
make grep searches easier to conduct!

6 Exit codes and conditional execution

When commands terminate they exit with an integer value known as a exit code. In
general, non-zero exit codes indicate that some sort of error or other abnormal con-
dition occurred. The exit code of the most recently executed foreground command
can be accessed via the $? environment variable. For example:

14

echo "numbers" | egrep '[0-9]+' >/dev/null ; echo $?

1

echo "123" | egrep '[0-9]+' >/dev/null ; echo $?

0

It is possible to make the execution (or not) of commands dependent on the exit
code of previous commands using the || and && operators. These operators provide
short-circuiting OR and AND functions respectively. In the case of A || B, B is
executed iff A has a non-zero exit status. Conversely, for A && B, B is executed iff A

has a zero exit code. For example:

echo "123" | egrep '[0-9]+' >/dev/null && echo "number"

ping -c1 srv1 || ping -c1 srv2 || echo "network down?"

More complex conditional execution can be achieved using if/then/else, for,
while and case statements. They are frequently used in conjunction with the
test command, for which the abbreviation ‘[’ is frequently used6. test can be used
to check the existence, access permissions, and modification times of files, as well to
perform comparisons between pairs of strings and even integers. For example:

if [-e foo -a -e bar -o $1 = "skip"]

then

echo "files foo and bar both exist, or arg1 == skip"

fi

while [! -r foo]

do echo "foo is not readable" ; sleep 1 ; done

case `arch` in

hpux)

PSOPT="-eafl" # UNIX-style 'ps' options for HP/UX

;;

*)

PSOPT="auxw" # BSD-style options are OK for Linux

;;

esac

When using these commands it can be tricky to remember where it is necessary
(or forbidden) to insert command terminators, such as the newline character or
‘;’. Perhaps, the easiest way to learn more about these commands is by examining
other people’s shell scripts. A good source is to look in a Unix system’s boot scripts
directory. On most Linux boxes this is /etc/init.d or /etc/rc.d/init.d.

6On many older Unix systems, /usr/bin/[was a filesystem link to test. I’ve heard at least
one apocryphal story of an over zealous sysadmin tidying up /usr/bin/ by deleting ‘spurious’ files
such as [. . .

15

7 Shell script examples

The following section contains a number of fragments from shell scripts that I find
useful. I make no warranty as to their fitness for the purpose intended, or even that
they demonstrate good programming style.

The following is handy for searching a directory hierarchy of ‘C’ source files looking
for a particular identifier. Since all command line arguments are passed in to grep,
it’s possible to ask it to e.g. ignore case using the -i option.

function trawl () {

find . \(-name '*.[chsS]' -o -name '*.[ch]?' \) \

-print | xargs fgrep -n $*

}

This function can be used to send a kill signal to the named process(es):

function killproc() {

pid=`/usr/bin/ps -e |

/usr/bin/grep $1 |

/usr/bin/sed -e 's/^ *//' -e 's/ .*//'`

case "$pid" in [1-9]*) kill -TERM $pid;; esac

}

The following function can be used to add an entry to the tail of the PATH string,
or deletes the entry if it’s already present.

function addpath () {

case $PATH in

${1}) PATH=`echo $PATH | sed "s+:${1}++"` ;;

*) PATH="$PATH:$1" ;;

esac

echo PATH=$PATH

}

8 make and project building

When building a serious program you will have a number of different source files and
a collection of more or less elaborate commands that compile them all and link the
resulting fragments together. For large projects you may have helper programs that
get run to generate either data files or even fragments of your code. When you have
edited one source file you can of course re-build absolutely everything, but that is
obviously clumsy and inefficient. make provides facilities so you can document which
binary files depend on which sources so that by comparing file date-stamps it can
issue a minimal number of commands to bring your project up to date.

The information needed has two major components. The first is a catalogue of
which files depend on which other ones. The second is a set of commands that can

16

be executed to rebuild files when the things that they depend upon are found to have
changed. By default the utility looks for this information in a file called Makefile7.
In a practical Makefile there will often be a substantial amount of common material
used to make the actual rules themselves more compact or easier to maintain. In
particular variables will often be used to specify the names of the compilers used
and all sorts of other options. My first sample (or template) Makefile will be for use
with an imaginary programming language called frog. It imagines that source files
are first compiled into object code, and then linked to form the final application.

Makefile for "princess" program

COMPILE = frogc

OPTS = -optimise -avoid_lillypads=yes

LINK = froglinker

princess: crown.o tadpole.o

$(LINK) crown.o tadpole.o -to princess

crown.o: crown.frog

$(COMPILE) $(OPTS) crown.frog

tadpole.o: tadpole.frog

$(COMPILE) $(OPTS) tadpole.frog

test.log: princess test.data

date > test.log

princess < test.data >> test.log

end of Makefile

The above file starts with a comment. Each line that begins with # is comment.
Next it defined three variables, which are supposed to be the name of the compiler,
options to pass to the compiler and the name of the linker. Separating these off in
this way and then referring to them symbolically makes things a lot easier when you
want to change things, which in the long run you undoubtedly will. Note the use of
round parentheses rather than curly braces to access Makefile variables.

The next few blocks are the key components of the file. Each starts with a line that
has a target file-name followed by a colon, and then a list of the files upon which it
depends. Following that can be a sequence of commands that should be obeyed to
bring the target up to date. These commands must be inset using a tab character
(n.b. not spaces). A line that does not begin with a tab marks the end of such a
sequence of commands. More or less anywhere it is possible to refer to variables, and
using a dollar sign you can refer to either something defined in the Makefile itself
or to an environment variable exported by the shell. Additional variable definitions
can be passed down when make is invoked.

7You can also use makefile without a capital. Many Unix users (slightly) prefer the capitalised
version because it results in the file being shown early on in the output from ls when they inspect
the contents of a directory.

17

To use this you just issue a command such as make test.log, where you specify
one of the declared targets. make works out how many of the commands need to
be executed and so in the above case if nothing at all had been pre-built it would
execute the commands

frogc -optimise -avoid_lillypads=yes crown.frog

frogc -optimise -avoid_lillypads=yes tadpole.frog

froglinker crown.o tadpole.o -to princess

date > test.log

princess < test.data >> test.log

If you do not tell make what to do it updates whatever target is mentioned first in
your Makefile.

A true Unix enthusiast will feel that the above Makefile is too easy to read and
that it does not include enough cryptic sequences of punctuation marks. A slightly
better criticism is that as the number of source files for our princess increases the
contents of the file will become repetitive: it might be nice to be able to write
the compilation command sequence just once. This is (of course) possible. In fact
there will usually be a whole host of built-in rules and predefined variables (they are
typically called macros in this context) that know about a wide range of languages,
and the most you will ever want to do will be minor customisation on them. To
illustrate the power of make I will stick with my imaginary Frog language. To tell
make a general rule for making .o files from .frog ones you include something like
the following in your Makefile:

.frog.o:

$(COMPILE) $(OPTS) $<

where the $< is a macro that expands to the name of the source file that needed
recompilation. There are other slightly cryptic macros that can be used in rules like
this. These funny automatically defined macros are needed so that you can refer to
the files that the general file-suffix-based rule is being used on.

$@ expands to the name of the current target, ie the file that is to be re-created;

$< expands to the name of the “prerequisite” file, ie the source file that had been
seen to have a newer time-stamp than the target;

$* is like $< except that what it expands to does not include the file suffix.

By default make stops if one of the commands it tries to run fails, and it then deletes
the associated target. The idea here is that if just one of your source files contains
a syntax error then everything will be re-built up to the stage that that is detected,
and things will be left so that a subsequent invocation of make will try that file again
and then continue.

There are in fact a few further things that I ought to mention with regard to make:
if you use file suffixes other than the ones that are initially known about you may
need to declare them and specify their ordering. In the case being discussed here it

18

would be necessary to specify first an empty list of suffixes (to cancel the built-in
list8) and then list the ones that are desired. The various file suffixes should be
listed in order, with generated files first and original source ones last:

.SUFFIXES:

.SUFFIXES: .o .frog

It is also recommended that you put a line that says

SHELL = /bin/sh

in every Makefile so that even if it is invoked by somebody who is using a non-
standard shell its internal command processing will behave in a standard manner.

Again (as you might expect) there are other declarations that can be provided for
various specialist uses. I will not even mention them here.

Some versions of make provide extra facilities, notably the opportunity to build con-
ditions into the file so that different things happen based on the values of macros.
Another extension is the ability to reference other files so that it is as if their con-
tents had formed part of the original Makefile. I suggest that you avoid any such
features even when they do make life a lot easier, at least until you have had sig-
nificant experience moving programs from one computer to another. Some people
would disagree with me here, perhaps suggesting that whenever you move to a new
computer you should fetch and install a copy of the GNU version of make on it so you
can be certain that all of its capabilities are available. I will re-phrase my advice to
suggest that you stick with very plain and simple Makefiles at least until you feel
comfortable re-building GNU make from source and installing it on new computers!

It is well worth using a Makefile as the repository for many more commands than
just those to recompile your code. You can usefully put in a target that tidies up
by deleting all object and executable files (leaving just the original sources present),
ones to run test cases, commands for formatting and printing the manual, scripts
that pack up a version of your program for distribution and interfaces to whatever
backup/archive discipline you adhere to. The one file can then end up as documen-
tation of all the major procedures associated with the management of your program:
it is perhaps sensible then to make sure it has plenty of informative comments in it.

It is perhaps at this stage worth noting the command touch that resets the date
on a file to make it look as if it is new. Use of this can sometimes allow you to
trick make into assuming that some binary files are new enough that they do not
need re-building even though the general rules given suggest otherwise. This can be
helpful if you make changes in some source files that you are certain do not really
call for re-compilation: eg correction of spelling errors in their comments.

The following example is a simple Makefile for a collection of C sources. It uses the
makedepend utility to auto-generate the dependencies list and append it to the end
of the Makefile. Generating the dependencies in this way avoids obscure bugs that
can be caused when hand-entered dependencies are inaccurate and result in some
files failing to be compiled when certain #include’d files are updated.

8At least some versions of make appear to require this.

19

TARGET = my_prog

SRCS = a.c b.c c.c

OBJS = $(SRCS:.c=.o)

CC = gcc

CFLAGS = -O2

INCLUDES = -I.

LD = ld

LDFLAGS = -Bdynamic

LIBS = -lm

RM = rm -f

.c.o:

$(CC) $(CFLAGS) $(INCLUDES) -c $<

$(TARGET): $(OBJS)

$(LD) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

clean:

$(RM) *.o $(TARGET)

depend:

makedepend $(INCLUDES) $(SRCS)

DO NOT DELETE THIS LINE -- make depend depends on it.

a.o: magic.h magic2.h

b.o: magic.h magic2.h

c.o: magic2.h

9 rcs and friends

The most common cause of corrupted or lost files these days is not liable to be
hardware failure, viruses or rogue software. It will be carelessness on the part of the
owner of the files. The proper protection against ill-conceived editing and false-starts
towards program upgrades are best based on keeping a fairly detailed incremental
record of changes made to all files. Because most changes are rather small these
can be stored quite compactly by keeping a base version of each file and a list of
changes made to it. The program diff which is discussed later on can compare
two versions of a file to generate just such a list of changes. If properly organised
such a scheme could have just one file representing a base version of a module, the
most recently released fully-tested version and several experimental versions. Any
one of the versions stored could be re-created by applying the relevant set of stored
edits to the base version of the file. Having got that far it would seem natural to
attach commentary to each set of updates to document their author and intent, and
to accept the fact that several programmers might be working on just one project,
and all of them might be making their own separate changes. With all this in place

20

editing a file should never destroy information, because it will always be possible to
reconstruct the state the file was in before it. It is still necessary to back up files to
protect against system failure or wholesale deletion of the code database, but overall
everything should feel a lot safer. What I have just described is a revision control
system, and the Unix tool rcs is the prime example9. Note that rcs is at least as
relevant when developing documentation (or indeed literary works) as when writing
programs.

Getting started with rcs is easy. Change directories into the one where your source
files live. Create a sub-directory called RCS which will be where the system keeps its
database. You then never mess about inside that directory directly, and periodically
copy its contents to floppy disc, magnetic tape or some other fully secure and for
choice remotely stored medium. Now suppose you have a set of files that make up
the base-line version of your program: imagine they are called Arthur.java and
Norman.java. You issue the commands:

ci Arthur.java

ci Norman.java

and when you have finished typing in the description of the two files that you are
asked for and you look at what has happened you find that your files seem to have
vanished. In fact they have been entered into the database with a “revision number”
set to 1.1.

ci stands for check-in. Given that it is perhaps not too much of a surprise that
the converse command is called co for check out. This has two rather different uses.
The first is when you just want to read the file (and the most recent version of it at
that). Then you say just

co Arthur.java

and you should find that the file has re-appeared. You can print it or compile it. If
you want to edit it you ought to say

co -l Arthur.java

where the -l stands for lock. Part of what rcs does for you is to arrange that only
one user can lock a file at any one time, so if you are working in a multi-user project10

and this succeeds then you know that none of your colleagues will be able to lock
that particular file until you have finished making your edits and have checked it
back in again. If you specify the lock flag (-l) with ci it checks the file in but leaves
a copy outside the database for you to continue editing.

Note that with this scheme you may need to have a suitably elaborate Makefile

that checks out (without locking) all the files that it needs to compile. Unlocked
checking out is possible at any time. All that locking does is to ensure that the only
person subsequently allowed to check a file back in is the person who successfully
obtained a lock for it.

9sccs is another, but at least locally rcs is distinctly preferred.
10Such as the Lent Term group project . . .

21

The command rcsdiff compares the version of a file that you have checked out
with the version in the database so you can get a quick reminder of what you have
just changed.

Each time a file is checked in it is given a new revision number. These numbers
normally run 1.1, 1.2, 1.3, You can check out a specific one of these by saying
(eg)

co -r1.4 Norman.java

While checking in a file rcs scans it for the string Id and if it finds that it replaces
it with a longer string that gives the name of the file, its author, revision number
and the date. This is a textual substitution so you should normally place the marker
within a comment or a string. If you put it in a string you may be able to access
this version information when your program is run.

If the string Log is present in your source file the explanations you type in when ci

prompts you are collected there, (almost) painlessly accumulating update history as
part of your source files. Some other similar substitutions are made for other words
enclosed in pairs of dollar signs.

There are (of course) rather more facilities and options than just that, and in par-
ticular special provision is made for the case where a project is totally under the
control of just one programmer and so the full discipline of locking is too heavy
handed. The only option I will mention here is co -ddate where the date can be
specified in almost any even half-plausible syntax (the only trick is that the suffix
LT is often useful, and indicates that the clock should be measured in local time
rather than (say) the time zone relevant for California or Japan).11 This option
recovers the latest version of the file whose date is no later than the one given. Eg

co "-d monday" file1.xxx

co "-d 2 July" file2.yyy

co "-d 20:00 gmt" file3.zzz

For the schemes that permit branches in the tree of versions see the manual pages:
the need for that should not arise until you have had time to get thoroughly com-
fortable with the basic commands. Another command worthy of investigation is
rcsfreeze. It enables you to assign a symbolic revision name to a set of source
files. You might wish to do this from time to time to denote when your set of source
files are in a state that you may wish to return to, for example, at landmark points
in the development cycle.

RCS is one of the oldest version control systems available on Unix. It is still very
widely used, but many large projects have moved on to more recent alternatives.
One of these is CVS, which started out as a layer on top of RCS that provides
extensions for dealing not just with individual files, but also entire directory trees.
Another important feature of CVS is networking support, which allows the working
files and repository directory to sit on different computers. Web sites that host

11Use export RCSINIT=-zLT if you prefer the rcs tools to output all dates in local time.

22

freely usable CVS servers have sprung up, such as http://sourceforge.net/ or
http://savannah.nongnu.org/.

CVS still has a number of annoying limitations and quirks. For example it under-
stands only changes within files and remains ignorant of changes such as moving
and copying files or directories around. Subversion is a more recent tool that has
quickly become popular and is now replacing CVS in many projects. It solves most
of the problems with CVS quite elegantly and is used via the svn and svnadmin

commands. The full Subversion documentation can be found on http://svnbook.

red-bean.com/.

One area where both CVS and Subversion differ radically from RCS is the question
of locking. RCS follows a lock-modify-unlock model. It prevents two people from
editing a file simultaneously by granting a write lock only to one of them at a time.
If you fail to obtain a lock on an RCS-controlled file that you want to change, you
normally have to contact the person who has the lock and see how long they expect
to be working with that file. You may also instead choose to check the file out
unlocked and edit it locally. Then when (later on) you do succeed in locking the file
you can try to merge your own edits with the changes that the other programmer
made. With svn and cvs, this copy-modify-merge principle is actually the normal
way of working, and is better supported. Files are normally not locked and can
be edited simultaneously by several team members. Both tools go to some trouble
to detect during a commit operation (that is what RCS calls a check-in) whether
someone else has already committed a change to a file while you were editing it. If
you and the other programmer made sufficiently well separated changes to the file,
these tools are usually able to propose a good merged version for you automatically.
If not, they provide you a version in which the conflicting simultaneous changes are
clearly marked, which you then have to resolve manually in your editor.

In any case, it is anti-social to lock a file in RCS for longer than you have to, or to
modify a working file in CVS/Subversion locally without committing it back into
the repository for a long time. It will generally count as good practice to plan your
changes first, and then check-out, change and check-in the file as quickly as possible,
to keep the central tree in the repository free for as much of the time as possible.
For very substantial changes that take much longer, all three tools have support for
creating new branches in the version history. These are often used by sub teams
who prefer to avoid interfering with the main (“trunk”) version of the project tree.
However, it may then involve a bit more work to merge such a development branch
back into the trunk later on.

On starting to use rcs you are liable to find two general frustrations. The first is
that it is not integrated with or especially comfortable to use with make unless you
use special mechanisms provided by the GNU version of make. The second is that
it stores its database in a rather rigidly defined location (ie the subdirectory RCS

of the currently selected directory), and this means that all of the group of users
working on a project tend to need to work in this one directory. One way out of this
is that group members have in their respective working directories symbolic links
named RCS to a common shared subdirectory with the *,v database files into which
all group members can write. Better security can be achieved if the database files
are only made accessible to a special user and the ci and co programs have the
setuid bit set such that they can access the database files with this special user’s

23

privileges. This way individual group members can check files in and out without
having the ability to corrupt the database files and thereby destroy old revisions.

In general, svn and cvs are today widely considered to be far more convenient for
co-operative working. There is less need for them to interact closely with make,
because these tools can easily be applied to an entire directory tree efficiently. They
also can be deployed far more flexibly, because they can access remote repositories
via ssh remote login. RCS remains very useful as a simple tool for tracking changes
to just an individual file, where creating an entire repository subdirectory – as CVS
and Subversion require – might be considered an undesireable overhead.

10 Job control

The features mentioned here are probably ones that you are already familiar with,
but for completeness I will mention them again.

Under Unix you can have several tasks running at once: one foreground task that
you are interacting with and many background ones. Some background jobs will be
active and running while others may be suspended. The command jobs displays
information about the current situation, while ps can give information about tasks
at a finer grain (eg when one job that you have launched in fact ends up generating
a number of sub-tasks).

To start some task in the background you append an ampersand (&) to the command
that starts it. Alternatively you can start the task as usual and then interrupt it
using control-Z. This suspends its work. A suspended job can be allowed to proceed
in the background using bg and any job can be made into the one that is directly
connected to your terminal using fg. The jobs you have to work with may be referred
to as %1, %2, . . . , and the jobs command lists them so you can be reminded of the
numbers allocated to each particular activity. To cancel a job you can use kill on
it.

Ampersand can be used within shell scripts to launch tasks in the background.
$! is assigned to the process ID (PID) of the most recently executed background
command. The shell builtin function wait can be used to later wait for completion
of the a background process, and collect its exit code. For example:

ping -c 1 bailey & pid1=$!

ping -c 1 lundy || wait pid1 || echo "Net broken?"

Especially on multi-user systems it is polite to prefix long and non-urgent commands
with nice, which gets them run at a lowish priority thereby interfering less with
other interactive work. Putting the word time before a command records the CPU
and elapsed time it takes to execute it, splitting the computation time into that
used directly by the task and that consumed by way of system overhead. It is
unreasonable to expect timings to be accurately repeatable, if only because of effects
of multi-tasking, virtual memory and caches.

nice make & # make in background at low priority

24

fg # bring it to the foreground

^Z # suspend it...

bg # .. and put back into background

time program < test.data > test.output # test time

jobs # see what jobs I have active

kill %3 # kill job number 3

The disposition of background tasks that have not completed at the time that you
log out and other such oddities can also be controlled, but such matters fall beyond
the scope of this introduction (see nohup).

Having multiple background jobs running and controlled in this manner is probably
less common than it used to be: nowadays many people will use Unix via X-windows
and if they have several tasks that they want performed they will run them each in
a separate window. This leaves the basic Unix job-control mechanisms to be used
for starting new X windows and applications, as in

xterm -fn 10x20 -sb -sl 300 &

xclock &

where the xterm command launches a new command window (using a big font and
providing 300 lines of scroll-back), while the second command pops up a clock for
you. In each case the ampersand is important so that the new task runs concurrently
with the shell from which it has been invoked.

Creating totally excessive numbers of Unix tasks can overload and ultimately crash
the system and so is discouraged, but some amount of concurrency can speed up
things even on single processor machines, because it allows other tasks to utilise
the CPU whenever one waits on an I/O request. Trying to speed up compilation
by starting too many jobs at the same time (one for each input file) is not in
general useful: the jobs will compete for memory and disc access and can easily slow
things down. However, if you’re using a multiprocessor machine, or compiling in
an NFS mounted directory than there can be significant benefits. Investigate use of
make -j <n>, but take care not to upset your colleagues on multiuser machines.

Some large tests might be better run at times when a computer is not otherwise
loaded. The command at allows you to schedule something to be executed later.
Suppose that you have a program you would like recompiled overnight, and a set of
commands stored in script.file that you want executed later on you could issue
the commands:

at -f script.file noon tomorrow

at 02:00am

cd /home/acn1/project

make

^D

The first form specifies the commands to be obeyed by indicating a file that they
live in. The second will prompt you to type in commands (I have displayed them
indented), and you end the list by typing control-D (ie the commands terminate at

25

an end-of-file mark). As with rcs the format for dates and times that is supported
is astonishingly flexible and general. The command atq should show you all the jobs
you still have pending, but with luck you will not need to use it since at generally
sends email to you when your task runs.

11 More shell facilities: history

Your shell keeps track of all the commands that you have issued and makes it easy
for you to activate them again. This is achieved by making text that starts with an
exclamation mark (!) expand into some variation off a previous command (much as
things that start with a dollar get replaced by the value of a variable). The easiest
cases arise when you want to repeat a command exactly as it was. Then the only
issue is how to indicate which previous command is to be re-issued. There are five
recipes:

1. !! just repeats the most recent command, whatever it had been;

2. !-n generalises on the above and repeats the command n back. The
simple case !! is in fact an abbreviation for !-1;

3. !n re-plays command number n where n starts counting at the start of
your session. The command history displays the commands that are stored
along with their numbers in case you are not good at counting;

4. !string is a search. When you follow the exclamation mark with a string
the shell searches back for the most recent command that starts with this
string, and uses that one. This may well be the most generally useful variant;

5. !?string? is also a search, but by enclosing the string within question marks
you indicate that the string should be looked for anywhere within the stored
commands, not just at the start of the line.

When you have identified an old command with one of these recipes you can change
the command. After all you may well be wanting to re-play it because you did not
get it quite right last time. You can put an edit request after a history reference,
and this is of the form :s/pattern /replacement / where it is legal to use almost any
character as the delimiter where I have used “/”. As might be imagined this makes
the indicated change to the old command. A special syntax is available if you want
to make an edit to the most recent command. For instance if you had just typed in
the mis-spelt command histery and wanted to correct it you could issue either of
the following equivalent forms

!! :s/e/o/

^e^o^

and it is clear that the short-hand using ^ saves a useful amount of typing.

Because history substitutions are a part of the general shell command-line expansion
process (along with file-name wild cards and variable references) you can put other

26

text before or after a history reference again allowing you to get a modified version
of a previous command. You can even make several history references on one line if
that is at all useful.

The history list in bash can also be browsed very conveniently with the cursor keys
and in fact many of the emacs key combinations are available. For example, Ctrl-
R initiates an interactive search backwards through the history list. I find these
interactive history editing techniques much easier to use than the ! mechanism,
which probably was more useful in the old teletype terminal days where no cursor
was available.

As well as history, bash also supports quite a sophisticated command line completion
mechanism. It can be activated to suggest completions to a command line hitting
the TAB, ESC or Ctrl-] keys. Various options control which databases it uses for
completion; file-name, history and host-name completion are possible.

12 Data tools (1): tr

There are many editing-style tasks that are slightly beyond the (easy use of) simple
substitution capabilities of text editors but not complicated enough to make you
want to rush out and write a new program to perform them. Unix provides several
tools that cover common conversion tasks that you may come across. The first of
these performs simple character substitution, and it is called tr. You should note
that the version of tr that I describe here is the one documented in the book [1] and
is as defined for Unix systems that follow the “System V” tradition. The version
of tr on Unix systems descended from the BSD family differs, and the GNU tr

as provided on Linux documents itself as not being fully compatible with either
tradition. So before you use this command on any particular computer please check
the man pages!

You give tr some simple options and two strings. It reads from its standard input
and writes to the standard output, so it is usually seen with file redirection or pipes.
Its basic use is to replace each character that is present in its first string with the
corresponding member of the second. Strings can be abbreviated (as with grep) to
show ranges of characters. Two plausible uses follow:

tr A-Z a-z < original.file > lowercase.file

cat message | tr a-zA-Z b-zA-Za | ...

The first of these turns upper case letters into their lower case equivalents, and
is obviously a useful thing to be able to do easily. The second is more of a joke:
it replaces each letter by the next one in the alphabet to produce a very weakly
obscured version of some text.

With the -d flag the command only needs to be given one string, and it just deletes
any characters listed in this string from the file. For instance if you have received
a file from a DOS/Windows site it probably has newlines represented as carriage
return/linefeed pairs and it may be padded at the end with control-Z characters. It
can be cleaned up using

27

tr -d '\015\032' < dos.file

where the bad news is that I have had to use octal escapes to specify the control
characters that I want to discard.

A final use for tr is with the -s flag where if it finds any repeated strings of any
of the characters from its second string it consolidates them into just a single in-
stance. It can sometimes be useful to remove redundant blanks and newlines. Such
processes are perhaps unexpectedly useful things to have in your armoury when you
are building long pipes that use output generated by one utility as input to another:
tr might be used to clean up the output to make it more digestible for the next use
to be made of it.

... | tr -s '' ' \012' | ...

Not a very complicated tool, but useful to know about!

13 Data tools (2): sort

sort can read an input data set from standard input, or from a set of files specified
on the command line. It then sorts all the lines in the data set according to various
command line options, and sends the sorted data to standard output. sort uses an
external sort algorithm, and is efficient even when dealing with large datasets — I
use sort on datasets of several gigabytes quite regularly.

By default, the sort key is the entire line, but sort can be instructed to use a specific
field in lines in the dataset using the -k POS1[,POS2] option. The default option
is for fields to be delineated by whitespace characters, though this can be changed
with the -t separator option. -k 2,4 would specify a sort key consisting of fields
2 through 4. Numeric (as opposed to dictionary) sorting order on a key can be
specified with the -n option, and the sort order reversed with -r. Multiple sort keys
can be specified on a single command line, with the primary sort key specified first.
Sort can also be used to remove duplicate lines in the sorted output by using the -u

option.

sort -t : -k2n -k1 <input

pear:3

banana:9

apple:70

banana:70

orange:100

banana:102

14 Data tools (3): cut

The cut utility can be used to extract sections from lines in its input. Like the other
data manipulation commands it can take input from standard input, or from a list

28

of files on the command line. cut can be operated in two basic modes: extraction
of fields (-f field_list), and extraction of characters (-c position_list). The
field list and character position lists are specified using a comma separated list
of figures, with hyphens used to denote ranges. The command cut -c 1-10,20-

would extract all but character columns 11-19 of the input data. When used for
field extraction, option -d can be used to specify the field delimiter.

Eg, Using the same input as the previous sort example:

sort -t : -k2n -k1 input | cut -d : -f 2

3

9

70

70

100

102

15 Data tools (4): sed

The next data tool to mention is sed, which is one of the world’s crudest and dullest
editors. The reason it still exists and qualifies for inclusion in this course is that it is
intended for use embedded within scripts where it can do automatic and systematic
editing for you. Thus nobody in their right mind would use sed when first typing
in a program, but uses for it abound where a similar set of edits must be applied to
a large number of files or where the nature of some wholesale change does not quite
match the global-replacement facilities of your normal screen-based editor.

Since it is expected to be used in scripts, sed reads the original version of the file
it is to process as a stream. It either reads from files listed on the command line,
or if none are given it uses its standard input. The edited version is always sent to
the standard output. Editing commands are either given directly on the command-
line (typically delimited by quote marks) or in a script file that is named on the
command line after them key -f.

When processing a file sed works through the file line by line applying each of its
commands to all lines to which they are relevant. Thus really simple uses of sed let
you perform collections of global exchanges all the way through a file. For instance
to change every dog into a cat and every bone into a mouse you might use the
command

... | sed 's/dog/cat/g; s/bone/mouse/g' | ...

The command being used is just “s” for substitute. The pattern that follows it is a
regular expression (very much as for grep.) After the final “/” there can be some
flags, and the g here instructs that the exchange should be made as many times
on the line as possible: by default only the first match on each input line would be
processed.

Any sed command can be preceded by one or two addresses to limit the range within
the file that it will be applied to. If you use a number as an address it is treated as

29

a line number. The symbol $ stands for the end of the file. So if you want to make
an edit that leaves the first dozen lines of your file alone you might try a command
of the form 12,$s/xx/yy/. The more interesting feature of sed is that you can use
regular expressions as addresses. If you write just one pattern it will apply its edit
to all lines that match it. Appending an exclamation mark causes the edit to apply
to all lines except those matching the pattern. A pair of comma-separated patterns
will select a region from where the first pattern matches up to (and including) where
the second does.

We have already seen the s command. Next I will mention that d deletes a line. It
is then clear that the command

/public static void main/,/^ *}$/d

deletes all the lines from one containing the words about main down to one that
consists of just a close curly bracket (possibly preceded by some spaces). Note that
the range specified does not do anything to enforce matching of braces, so it will
delete until the first close brace that it finds on a line of its own.

Another example, also slightly fragile, supposes that your code has a collection of
lines that optionally print a trace statement, and that you want to comment them
all out. Each such statement is supposed to be on just one line:

/if ?(debug)/{

s/^/ \/*--- /

s/$/ ---*\//

}

This applies a pair of commands to each line that contains either if(debug) or
if (debug)12. The first command matches against the first position in the line and
inserts there /*--- while the second substitution puts ---*/ at the end of the line.
You can see that a number of ugly backslash characters have been required so that
various characters in patterns and replacement text are treated literally rather than
as special. The use of multiple commands associated with one address expression
requires that the braces appear on separate lines just as shown in this example.

Of course sed has many commands beyond the delete and substitute ones listed
here, but its real power comes not from the richness of its command set but from
the use of regular expressions. One way in which its variant on regular expressions
differs from that used in grep is that you can enclose a section of a pattern within
backslashed parentheses, and the effect is that whatever matches that pattern is
captured and stored in a text variable. Up to nine such strings can be collected, and
the replacement text in a substitute command can refer to them using \1 to \9. So
for instance if a file consisted of data in three columns separated by blanks it would
be possible to rearrange columns ABC into the order BACA (making a second copy
of the first column, A) using

s/ *\([^]*\) *\([^]*\) *\(.*\)/\2 \1 \3 \1/

12With a space in one but not in the other.

30

This looks utterly horrible! But if read through one chunk at a time it can make
sense! The pattern first looks for zero or more blanks. Then we have a block enclosed
in \(...\) so that its value will be stored. The pattern within looks for an arbitrary
repetition of characters that are not spaces. Next we match a further run of blanks,
capture a second column of non-blank data, skip further inter-column space and
at the end \(.*\) matches and saves everything up to the end of the line. That
completes the pattern. The replacement text just plays back the saved material in
the order we want it in. Achieving that effect using a typical mouse-driven editor
would probably be pretty uncomfortable.

I think that typical strings of sed commands are dense enough in punctuation that
they deserve to go into files so they can be prepared carefully and tested. Comment
lines in such files begin with # and are somewhat desirable!

16 Data tools (5): diff

You probably already know that when you want to compare two files you use diff.
By default it displays the differences between the two files by quoting line numbers
and then listing lines that have been added, deleted or changed. A fully-fledged
Unix tool-user will also be aware of at least some of the command-line options it
can be given:

-i Ignore upper/lower case distinctions when making the comparison;

-b Treat multiple spaces as if they had been one space, and multiple newlines as
if they had been just one. This can be useful if you have recently adjusted the
layout in a file and do not want to be overwhelmed with reports that are just
whitespace changes;

-r When the “files” given to diff are in fact directories this recurses through
them and runs diff on all files in any common sub-directories;

-Dsymbol This merges the two files by inserting C-style conditional compilation
directives of the form #ifdef symbol. It is arranged that if symbol is defined
the generated file would be equivalent to the second file, while otherwise it
would match the first one. Even if you are not using C this can be useful since
you can edit the merged file and search for the string symbol to find where
discrepancies had occurred;

-e Generate a simple edit script (intended for the Unix editor ed) that would
change the first file into the second. In effect this is what is being done
internally in rcs where is stores files as base versions and sequences of updates.

-u A GNU extension that produces unified diffs, a very useful form of diff output
that is designed to be easy for humans to read and robust against slight version
mismatches when used as input to the patch command.

Note that if the two files being compared have identical content then diff will
generate no output at all. A handy tool built on top of diff is rcsdiff. This can

31

be used to compare the current version of a file against any of the versions stored in
the rcs repository. The default behaviour is to do the comparison against the most
recently checked-in version, thus enabling a user to see whether a given file has been
updated since.

17 perl as a super-set of grep

Thus far I have concentrated on tools that are fairly small and fairly specialised.
Even when used individually these solve problems that would otherwise require a lot
of manual work. Linked together with pipes they can do yet more. It is possible to
use the Unix shell to run quite complicated sequences of sub-tasks, with conditional
execution, recursion and most of the framework that you would expect in a real
programming language. When used this way you would let the shell call upon the
various lower level tools to perform each elementary operation: of itself it would
do just the co-ordinating. Both the inefficiency of this and the fact that there are
at least half a dozen different Unix shells in use has led to slightly more integrated
scripting languages, such as awk, perl and python gaining popularity.

For processing a set of input data into a different form awk (or its slightly more
powerful GNU cousin known as gawk) typically provides a compact yet powerful
programming solution. For example, a program to generate a histogram from a set
of experimental results could easily be crafted as just a few lines of awk.

When the task in hand requires interfacing with other system facilities (such as the
OS, or other programs and libraries) then more powerful general purpose program-
ming languages such as perl and python are best called upon.

Some have a strong preference for the more recent python over perl, since it provides
a modern object-oriented programming environment with support for exceptions and
many other high-level features. python programs tend to be quite readable (and
hence maintainable), but are often are a little longer than their perl equivalent.

In contrast, perl has a reputation for being a “write-only” programming language,
perhaps because the syntax of perl is derived from diverse languages and tools such
as sed, awk, C, and the Bourne shell, therefore makes widespread use of signifi-
cant punctuation characters, has a huge array of predefined cryptic operators and
functions with strange default behaviours — all designed to save the programmer
precious key strokes. However, perl has been around for a long time, and is widely
used and installed on many systems.

perl can simulate and generalise most of the tools mentioned so far, including quite
elaborate shell scripting. Since it is a full-scale programming language I will not
start to pretend to cover more than a very tiny fragment of it here. I can suggest
the introductory book by Schwartz et al. [2] and leave the definitive guide by Larry
Wall [3] for those who want to become real experts. The man pages offer a compact
guide to the language for those familiar with the basic concepts from other languages
such as sed or C and do not need a lot of examples. I will illustrate the language by
giving perl scripts that simulate behaviour similar to that which can be obtained
using one of the more specialist tools. So first I will cover grep.

32

The first version of this shows the “program” passed to perl on its command-line
after the key -e:

perl -n -e 'print if /regexp/' < somefile.txt

In this very concise example the -n flag causes the command given following -e to
be applied to every line of the input. The command given prints a line if it contains
a match against the given expression.

The same effect can be expanded out into something that looks more like a program:
A perl script lives in a file, and contains

#!/usr/bin/perl -w

while (<>) {

if (/regexp/) {

print $_;

}

}

When the name of this file is presented to the shell it reads data from either each file
named on its command line, or if there are none of those from its standard input.
The first line marks it as a perl script13, and the -w flag asks for warnings about
dubious constructs. Since almost anything is valid in perl you have to do something
quite seriously weird to get much of a warning! The body of the program we have
here is a loop. The angle operator (<>) causes the next line of input to be read and
saved in a standard place. The if statement matches this text against the given
regular expression (and regular expressions in perl are as extended as you could
ever dream of). If there is a match then the print statement is activated to send
something to the standard output. The “$_” references the location where the most
recent input line had been stored. The effect is that all lines matching the regular
expression get printed.

It is perhaps obvious that there will then be arithmetic statements, variables, arrays
and the ability to nest arbitrary mixtures of conditionals and loops. You can define
perl procedures and call them recursively. In consequence and at the cost of writing
a slightly longer script perl can perform much more complicated pattern detection
than can grep. But because the full power of regular expression matching is available
within perl those tasks that just need that remain quite easy to express.

18 perl for scripting

There are three things that perl does that make it a really useful language for
writing system maintenance utilities in. The first is that it has a rich built-in
collection of directory and file manipulation primitives. If the variable $filename is
the name of a file you are interested in then there are over two dozen tests you can
perform on it. Note that the operators are the same as for the previously mentioned
shell command, test. Important examples are:

13Well, you need to indicate there whatever place on your Unix system perl is actually installed.

33

-r $filename yields true if the file exists and is readable;

-w $filename is true if the file is writable;

-e $filename is true if it exists;

-z $filename is true if it exists but has zero size;

-d $filename if it is a directory rather than a simple file.

and other similar short operators can find the age of a file or the size (in bytes)
that it currently has. There are then further facilities for traversing directories,
expanding file-name wild-cards and changing file-access permissions.

The second feature is that it is easy to launch sub-processes and retrieve their output.
If you want the output from the program you are going to run to be sent to a file
or to the standard output you can use a system function, as in

system "javac Testfile.java";

but on other occasions you want your perl program to capture, parse and respond
to the output generated by the program. In such cases you just write an expression
which is the command you want executed enclosed in backquotes. In my example
here I just print the output straight away — normally you would store it in a variable
and process it further:

print `javac Testfile.java`;

The final strength that perl brings is the use of regular expressions to decompose
program output and a neat syntax that lets you separate out the parts of your sub-
program’s output. In fact this just comes from its general pattern-matching ability,
but I will illustrate it here based on a sub-call to grep. Actually one would normally
do grep-like things within your perl program, but I just want an illustration of
calling a program and then parsing the output. So suppose I have a file called
"funny.data" and within it there are a number of lines that contain the string XXX.
I can cause perl to invoke grep by putting

`grep -n XXX funny.data`

in my perl script. With the -n flag the output from grep might be something like

108: while ((c = XXX getc(fmakebase)))

150: return 1; XXX

179: fXXXor (i=0; i<n_user_words; i++)

with a line number, then a colon, and then the line that the pattern was found in.
The output from grep gets passed back to perl as an array of lines, and within each
line it is useful to search (using a very simple regular expression) for the colon and
split the line into two parts there. As a simple if frivolous demonstration I will just
filter things so that I only display things that are found within the first 160 lines,
and I will annotate the output a little:

34

#!/usr/bin/perl -w

@grepresults = `grep -n XXX funny.data`;

chomp @grepresults

foreach $line (@grepresults) {

($linenumber, $contents) = split(/:/, $line);

if ($linenumber < 160) {

print "line=$linenumber, data=<$contents>\n";

}

}

The output might then be

line=108, data=< while ((c = XXX getc(fmakebase)))>

line=150, data=< return 1; XXX>

A more realistic application that might start off in a similar style would run a
compiler and then retrieve and parse the error messages for you. . .

19 perl as a general-purpose language

Again I must stress that this course is at best a taster for perl, and so rather than
giving a proper presentation of its syntax and capabilities I will just give a couple
of annotated sample programs. The ones I present are taken from the suggested
book [2].

19.1 Counting repetitions

My first example program counts the number of times each word is present in a file,
where the file contains just one word per line:

#!/usr/bin/perl -w

chomp(@words = <STDIN>);

foreach $word (@words) {

$count{$word}++;

or: $count{$word} = $count{$word} + 1;

or: $count{$word} += 1; (all 3 are equivalent)

}

foreach $word (keys %count) {

print "$word was seen $count{$word} times\n";

}

The first line is one we have seen before and marks this as a perl script. On the next
line @words refers to a variable that is an array type, and when we assign to it from
<STDIN> it ends up with each line of the input file in a separate element. The built-in
function chomp removes the newline characters that may initially be present in this
array. The foreach statement iterates over all items in the array. The reference

35

$count{$word} is the use of a hash table which is a bit like an array but can be
indexed by arbitrary things (in this case our words) not just by numbers. Note that
in perl references to scalar variables include a $ in the variable name to show that
a scalar rather than an array value is involved. Note also that the table of counts
did not need to be initialised first: in an arithmetic context an unset value is treated
as zero! Finally the built-in function keys is used on the hash table of counts. In
this case it is necessary to reference the whole hash table, not just some entry in it,
and this is why the text reads keys %count with a percent mark. Observe that the
output text is created by having variable references expanded within the string.

19.2 Extracting data from a table

Suppose you have a file whose contents are arranged as a number of fields separated
by colons. The fifth such column contains a name, which is followed (optionally) by
an address and phone numbers (separated off by commas). This curious format is
illustrated by a two-line (non-real) file:

acn1:x:1000:1000:Arthur Norman,T34,,:/home/acn1:/bin/bash

am21:x:1003:1003:Alan Mycroft,,,:/home/am21:/bin/bash

and happens to follow the layout used by Unix for password files. The task is to
list just the first names of all the users present. This provides an illustration of
the split operation. This takes a regular expression and a string and creates an
array whose elements are the parts of the string delimited by things that match the
regular expression:

#!/usr/bin/perl

while (<STDIN>) {

chomp;

($gcos) = (split /:/)[4];

($real) = split(/,/, $gcos);

($first) = split(/\s+/, $real);

print "$first\n";

}

This is tolerably dense, but I hope that with some explanation it will become read-
able. It starts by reading in lines from its standard input. The while loop reads
one line at a time. The line that has been read is left in a default variable called
$_ and other operations work on this if not told to use something else. This saves
typing somewhat. As before chomp removes the newline that is at the end of each
line. Here it works on $_. The right hand side of the next line starts by splitting the
input line at each colon. This hands back an array and so the element with index
4 is selected. Since the first item has index 0 this gets the field that we want. It is
assigned to $gcos where this name hints at a traditional Unix name for this field
in a password file. The next use of split find a comma, and can omit an explicit
subscript [0] because some cleverness in the assignment puts the first item from
the right-hand-side array into the scalar variable $real. The final use of split uses

36

a regular expression that looks for a string of one or more non-space characters.
The escape sequence \s is one of very many pre-defined escape sequences that give
you very concise ways of specifying words, numbers, whitespace and other common
things you may need to match. Finally I just print the result.

19.3 A bit more pattern matching

In a bit of perl pattern matching you can enclose parts of your regular expression
in parentheses, and the result (without backslashes this time) is that the parts of
the pattern that match those little fragments get stored in variables for you. For
instance when you use the C shell the display you get when you use time to record
how long a command takes to execute looks something like:

44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+0w

where the fields show user-mode time, operating system overheads, total elapsed
time and various statistics relating to memory and processor utilisation. I present
this example even though it comes from a different shell because it provides a plau-
sible example of some murky text string that needs to be decomposed. To skip the
issue of capturing the data I will put it into a perl variable by hand. In this display
I will underline the parts that I will suppose are wanted (for some reason):

$data = "44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+0w";

== ==== =====

The relevant fields can be extracted by matching the data against a regular expres-
sion

$data =~ /:([^.]*)\S*\s([^%]*)%.*io (.*)pf/;

print "field1 = $1 field2 = $2 field3 = $3\n";

The operator =~ asks for a pattern match. Within the horrid looking regular ex-
pression there are a couple of patterns that represent ranges of characters, so for
instance the sub-pattern [^.]* is looking for an arbitrary number of characters that
are not dots. The predefined escape \S matches any character that is not white-
space. And then some parts of the regular expression are in parentheses so that the
corresponding fragments of matched text can be retrieved as $1 etc in what follows.
Perhaps a little cryptic but very powerful!

There are many hundreds of perl modules available on archive sites for download-
ing. These provide ready-written facilities for a huge range of operations: image
compression, network management, database connectivity, extra data-types and al-
gorithms, . . . the list goes on and on. One of the strengths of the language is the
wide range of things that you do not have to write for yourself but can pick up in
this way.

A context where you are especially liable to hear perl mentioned is the Common
Gateway Interface (CGI), a mechanism in Web servers where accesses to a web page

37

not simply fetches a file but starts a little separate program that analyses the URL
and prepares the content of the Web page on demand. These CGI-scripts are very
frequently written in Perl and often provide complex interfaces to databases and
other programs.

20 A brief note about emacs

There is one tool that is very widely used on Unix (and of course elsewhere) which
draws on some of the tradition of these tools, but which embeds all of its power
within a single comprehensive interface. This is emacs. If you are only using this
as a simple screen editor, clicking on your mouse every time you want to open or
save a file and doing most of your navigation by dragging a scroll-bar then you are
not following the use-pattern that the original emacs designers had in mind and you
may be missing out on understanding just how much it can do for you.

emacs provides an astonishingly large collection of editing commands, various of
them based on searches using regular expressions of the form we have seen here. It
can also provide a model for file-management based on the idea that you are “edit-
ing” your directory structure, and it provides an editor-like environment for reading
email (which thus naturally permits easy searches through incoming or stored mail,
and makes the commands to display or delete mail rather like those to display or
delete files). Its scripting facilities are based on it having an embedded language
— emacs lisp — which makes it possible to write quite general programs based
upon the basic (and indeed not so basic) editing commands that are pre-defined.
Perhaps the best illustration of the power and benefit of the scripting capabilities is
the way in which the editor can be customised for the language that you are editing,
so that there are simple commands to move across blocks and procedures, to recom-
pile parts of your code and to re-position the editing focus at the first place that
the compiler spotted a syntax editor. Simple users can of course benefit from these
language-specific emacs modes without understanding where they came from, but
the open nature of emacs means that those who are more experienced can first cus-
tomise existing modes, and then design new ones to suit their own exact preferences
or to perform new tasks.

My belief is that gaining initial experience with grep and the like is useful even if
you intend to end up as an ultimate emacs wizard who uses it for everything.

On some occasions, you may find that you want to perform some minor edit on a
file that doesn’t really warrant the overhead of “firing-up” emacs. The editor vi

can prove useful in such instances. The document can be navigated using the cursor
keys, or if the terminal is not setup correctly, ‘h’,‘j’,‘k’ and ‘l’ can be used instead.
Ctrl-U and ctrl-D move up and down the page. To insert text at the cursor position
hit ‘i’ then enter the text. Insertion mode is exited by hitting ESC. To append after
the cursor position (eg to add something to the end of the line) use ‘a’ instead of ‘i’.
Characters can be deleted with ‘x’, whole lines with ‘D’. Searching can be achieved
using ‘/searchstring’ to search forward, ‘?searchstring’ to search backwards. The
next match is found by hitting ‘n’. After editing a document, a save and exit can
be performed using ‘ZZ’. Editing can be aborted with ‘:q!’. vi provides many quite
powerful features, but for those you’ll have to refer to the man page.

38

21 “Unix” tools and Microsoft Windows

The Unix tools discussed here represent a particular perspective on the world. It
starts with an expectation that serious users are going to be willing to take time
to learn how to use the systems that are at their disposal. It is perhaps rooted in
the “no pain, no gain” world view, which expects that anything that goes truly out
of its way to be easy for an utter novice to use will necessarily only have limited
capabilities. An elaboration on this is that the Unix tools are attempting to provide
fundamental building blocks of functionality (such as pattern matching), rather than
complete solutions (like writing your program for you automatically). Big tools will
be wonderful when what you want to is something that has been thought of and
supported by the tool author, but when it does not you are in trouble. Small but
generic tools provide at least some leverage even in new or unusual situations.

A second part of the Unix philosophy is that it should be possible to automate tasks.
Again setting up the scripts with all their pipes, redirections and messy parameters
may be a painful cost, but is can be seen as an investment since then the operations
concerned can be performed over and over again with the greatest of ease. This
applies just as much to slightly complicated and repetitive edits on a large file as
it does to the process of recompiling your program, running all your standard tests
and checking their output to see that it is as expected. For tiny tasks where you
write a short program, run it once and do not worry about documentation all this
seems unnecessary, but for bigger projects it is of course vital.

A third aspect of Unix is perhaps a legacy of the fact that most of these tools have
been around for a long while. However the tools described here represent an em-
phasis on command-line working, with hands firmly positioned above a keyboard.
For one who has taken the time to learn how to use the tools and who has set
up a set of well designed scripts and Makefiles almost all common operations can
be performed using a quite short sequence of keystrokes. Hands do not have to
move between keyboard and mouse, and the accurate positioning needed when se-
lecting something visually is avoided. The shell history mechanism saves keystrokes
compared to the DOS/Windows equivalent that tends to lead to long sequences of
repeated presses on arrow keys.

A final thing to note about these Unix tools (and to contrast, if you have used
it, with the Microsoft Development Studio) is that the tools I have discussed here
are by and large neutral. make does not mind whose compiler it is going to invoke.
Indeed it can be used to automate anything where one file gets re-built from another
and where date-stamps define dependencies. rcs stores updates to your files, but
leaves you to decide which editor you will use to change them. It does not lock you
in to one vendor or style. grep, sed and the rest are all general purpose.

Some tasks, however, do not fit in at all well with this style of work. The prime exam-
ple is probably desk-top publishing where fine adjustment of the visual appearance
of documents matters, and the automated testing of windowed applications where
text-based scripts find it a little hard to simulate interactive input and check the
program’s behaviour.

39

22 Conclusion

As previously mentioned, all the “Unix” tools are in fact pretty generic, and although
they original arose as part of the Unix project they have been ported to other plat-
forms, notably Windows. There (of course) they are run from a command-line.
Amazingly you can even get a version of the bash shell that runs under Windows,
although I would suggest that if you really want that environment you should prob-
ably install Linux on your computer instead! Better than the fact that they are
available is the fact that there are generally free versions of everything, in particular
versions from the Free Software Foundation issued under the GNU public license.
You should perhaps be aware that there are also a load of slightly half-baked ap-
proximations to the real Unix tools out there too, where somebody has wanted (say)
grep and implemented some subset of it for themselves. You may like to try to en-
sure that you find definitive versions of at least the more important tools. A useful
and fairly complete collection of Unix tools for Windows is Cygwin:

http://www.cygwin.com/

Cygnus spearhead a project intended to make it easy to host programs that were
originally written for Unix on a Windows machine, and in the process they have
gone quite a long way towards making it possible to simulate a Unix development
environment within Windows. They have an implementation of bash as well as
pretty well all the tools discussed in this course, and the associated free C, C++
and Fortran compilers are of respectable quality.

Everything you might want relating to perl is at

http://www.cpan.org/

References

[1] Arnold Robbins: Unix in a Nutshell. 4th ed., O’Reilly, 2005.

[2] Randal L. Schwartz, Tom Phoenix: Learning Perl. 4th ed., O’Reilly, 2005.

[3] Larry Wall, Tom Christiansen, Jon Orwant: Programming Perl. 3rd ed.,
O’Reilly, 2000.

[4] Leslie Lamport: LATEX – A Documentation Preparation System User’s Guide
and Reference Manual. 2nd ed., Addison-Wesley, 1994.

[5] Tom Christiansen: Csh Programming Considered Harmful. Periodic posting
to USENET group comp.unix.shell. http://www.faqs.org/faqs/unix-faq/
shell/csh-whynot/

Should you spot any typos or mistakes in these notes, I’d appreciate a quick message to

mgk25@cl.cam.ac.uk. [Id: notes.tex 1526 2011-09-30 18:34:32Z mgk25]

40

Notes

41

42

