Introduction to MATLAB

- exercises

Markus Kuhn

Michaelmas 2013

Exercise 1: Find a *short* MATLAB expression to build the matrix

	(1	2	3	4	5	6	7	
B =		9	7	5	3	1	-1	-3	
B =	ſ	4	8	16	32	64	128	256	J

Exercise 2: Give a MATLAB expression that uses only a single matrix multiplication with B to obtain

(a) the sum of columns 5 and 7 of B

(b) the last row of B

(c) a version of B with rows 2 and 3 swapped

Exercise 3: Give a MATLAB expression that multiplies two vectors to obtain

(a) the matrix $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ (b) the matrix $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{pmatrix}$

Exercise 4: Modify slide 18 to produce tones of falling frequency instead.

Exercise 5:

- (a) Write down the function g(t) that has the shape of a sine wave that increases linearly in frequency from 0 Hz at t = 0 s to 5 Hz at t = 10 s.
- (b) Plot the graph of this function using MATLAB's plot command.
- (c) Add to the same figure (this can be achieved using the **hold** command) in a different colour a graph of the same function sampled at 5 Hz, using the **stem** command.
- (d) [Extra credit] Plot the graph from (c) separately. Can you explain its symmetry? [*Hints:* sampling theorem, aliasing].

Exercise 6: Use MATLAB to write an audio waveform (8 kHz sampling frequency) that contains a sequence of nine tones with frequencies 659, 622, 659, 622, 659, 494, 587, 523, and 440 Hz. Then add to this waveform a copy of itself in which every other sample has been multiplied by -1. Play the waveform, write it to a WAV file, and use the **specgram** command to plot its spectrogram with correctly labelled time and frequency axis.