Introduction to MATLAB

- exercises

Markus Kuhn

Michaelmas 2013

Exercise 1: Find a short MATLAB expression to build the matrix

$$
B=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 7 & 5 & 3 & 1 & -1 & -3 \\
4 & 8 & 16 & 32 & 64 & 128 & 256
\end{array}\right)
$$

Exercise 2: Give a MATLAB expression that uses only a single matrix multiplication with B to obtain
(a) the sum of columns 5 and 7 of B
(b) the last row of B
(c) a version of B with rows 2 and 3 swapped

Exercise 3: Give a MATLAB expression that multiplies two vectors to obtain
(a) the matrix $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5\end{array}\right)$
(b) the matrix $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4\end{array}\right)$

Exercise 4: Modify slide 18 to produce tones of falling frequency instead.

Exercise 5:

(a) Write down the function $g(t)$ that has the shape of a sine wave that increases linearly in frequency from 0 Hz at $t=0 \mathrm{~s}$ to 5 Hz at $t=10 \mathrm{~s}$.
(b) Plot the graph of this function using MATLAB's plot command.
(c) Add to the same figure (this can be achieved using the hold command) in a different colour a graph of the same function sampled at 5 Hz , using the stem command.
(d) [Extra credit] Plot the graph from (c) separately. Can you explain its symmetry? [Hints: sampling theorem, aliasing].

Exercise 6: Use MATLAB to write an audio waveform (8 kHz sampling frequency) that contains a sequence of nine tones with frequencies $659,622,659,622,659,494,587,523$, and 440 Hz . Then add to this waveform a copy of itself in which every other sample has been multiplied by -1 . Play the waveform, write it to a WAV file, and use the specgram command to plot its spectrogram with correctly labelled time and frequency axis.

