Mathematical Methods for Computer Science

娄:
 UNIVERSITY OF CAMBRIDGE

Computer Laboratory

Computer Science Tripos, Part IB

Michaelmas Term 2013/14

Professor J. Daugman

Problem sheet
Fourier and related methods

15 JJ Thomson Avenue
Cambridge CB3 0FD
http://www.cl.cam.ac.uk/

Fourier and related methods

1. Given a complex linear space, V, define the notion of an inner product and in the case of $V=\mathbb{C}^{n}$ show that for any two vectors $x, y \in \mathbb{C}^{n}$

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ defines an inner product.
2. Suppose that V is a complex inner product space. Show the Cauchy-Schwarz inequality, namely, that for all $u, v \in V$

$$
|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle
$$

Define the notion of a norm for V and show that

$$
\|v\|=+\sqrt{\langle v, v\rangle}
$$

is a norm.
3. Calculate the Fourier series of the function $f(x)(x \in[-\pi, \pi])$ defined by

$$
f(x)= \begin{cases}1 & 0 \leq x<\pi \\ 0 & -\pi \leq x<0\end{cases}
$$

Find also the complex Fourier series for $f(x)$.
4. Suppose that $f(x)$ is a 2π-periodic function with complex Fourier series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

Now consider the shifted version of $f(x)$ given by

$$
g(x)=f\left(x-x_{0}\right)
$$

where x_{0} is a constant. Find the relationship between the complex Fourier coefficients of $g(x)$ in terms of those of $f(x)$. How do the magnitudes of the corresponding coefficients compare?
5. Suppose that $f(x)$ and $g(x)$ are two functions defined for real x and that they have Fourier transforms $F(\omega)$ and $G(\omega)$, respectively. Show that

$$
\int_{-\infty}^{\infty} f(x) G(x) d x=\int_{-\infty}^{\infty} F(x) g(x) d x
$$

You may assume that the above integrals exist and that you may change the order of integration in your calculations.
6. Consider the functions $f_{b}(x)$ and $g(x)$ defined by

$$
f_{b}(x)= \begin{cases}0 & x>b \\ 1 & -b<x \leq b \\ 0 & x \leq-b\end{cases}
$$

where $b>0$ is a constant and

$$
g(x)= \begin{cases}0 & x>4 \\ 1 & 3<x \leq 4 \\ 1.5 & 2<x \leq 3 \\ 1 & 1<x \leq 2 \\ 0 & x \leq 1 .\end{cases}
$$

Use the Fourier transform of $f_{b}(x)$ (derived in lectures) together with properties of Fourier transforms (which you should state carefully) to construct the Fourier transform of $g(x)$.
7. Suppose that the N-point DFT of the sequence $f[n]$ is given by $F[k]$ where $f(n)$ is itself a N-periodic sequence, that is $f(n+N)=f(n)$ for $n=0,1, \ldots, N-1$. Show that the shifted sequence $f[n-m]$ has DFT

$$
e^{-2 \pi i m k / N} F[k]
$$

where m is a constant integer. Show also that $\overline{f[n]}$, the complex conjugate of $f[n]$, has DFT $\overline{F[-k]}$. Suppose that $f[-2]=-1, f[-1]=-2, f[0]=0, f[1]=2, f[2]=1$. Find the 5 -point DFT of $f[n]$. Can you explain why it is purely imaginary?
8. Suppose that the sequences $f[n]$ and $g[n]$ have N-point DFTs given by $F[k]$ and $G[k]$, respectively. By expanding $F[k] G[k]$ show that the cyclical convolution

$$
\sum_{m=0}^{N-1} f[m] g[n-m]
$$

has DFT $F[k] G[k]$.

