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Outline

I Probability methods (6 lectures, Dr R.J. Gibbens, notes separately)
I Limits and inequalities. (3 lectures)
I Markov chains. (3 lectures)

I Fourier and related methods (6 lectures, Prof. J. Daugman)
I Fourier representations. Inner product spaces and orthonormal

systems. Periodic functions and Fourier series. Results and
applications. The Fourier transform and its properties. (3 lectures)

I Discrete Fourier methods. The Discrete Fourier transform, efficient
algorithms implementing it, and applications. (2 lectures)

I Wavelets. Introduction to wavelets, with applications in signal
processing, coding, communications, and computing. (1 lecture)
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Reference books

I (*) Pinkus, A. & Zafrany, S.
Fourier series and integral transforms.
Cambridge University Press, 1997

I Oppenheim, A.V. & Willsky, A.S.
Signals and systems.
Prentice-Hall, 1997

Related on-line video demonstrations:

A tuned mechanical resonator (Tacoma Narrows Bridge): http://www.youtube.com/watch?v=j-zczJXSxnw

Interactive demonstrations of convolution: http://demonstrations.wolfram.com/ConvolutionOfTwoDensities/
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Why Fourier methods are important and ubiquitous

The decomposition of functions (signals, data, patterns, ...) into
superpositions of elementary sinusoidal functions underlies much of
science and engineering. It allows many problems to be solved.

One reason is Physics: many physical phenomena such as wave
propagation (e.g. sound, water, radio waves) are governed by linear
differential operators whose eigenfunctions (unchanged by propagation)
are the complex exponentials: e iωx = cos(ωx) + i sin(ωx)

Another reason is Engineering: the most powerful analytical tools are
those of linear systems analysis, which allow the behaviour of a linear
system in response to any input to be predicted by its response to just
certain inputs, namely those eigenfunctions, the complex exponentials.

A further reason is Computational Mathematics: when phenomena,
patterns, data or signals are represented in Fourier terms, very powerful
manipulations become possible. For example, extracting underlying forces
or vibrational modes; the atomic structure revealed by a spectrum; the
identity of a pattern under transformations; or the trends and cycles in
economic data, asset prices, or medical vital signs.
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Simple example of Fourier analysis: analogue filter circuits

Signals (e.g. audio signals expressed as a time-varying voltage) can be
regarded as a combination of many frequencies. The relative amplitudes
and phases of these frequency components can be manipulated.

Simple linear analogue circuit elements have a complex impedance, Z,
which expresses their frequency-dependent behaviour and reveals what
sorts of filters they will make when combined in various configurations.

Resistors (R in ohms) just have a constant impedance: Z = R; but...

Capacitors (C in farads) have low impedance at high frequencies ω, and
high impedance at low frequencies: Z(ω) = 1

iωC

Inductors (L in henrys) have high impedance at high frequencies ω, and
low impedance at low frequencies: Z(ω) = iωL
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(Simple example of Fourier analysis: filter circuits, con’t)

The equations relating voltage to current flow through circuit elements with

impedance Z (of which Ohm’s Law is a simple example) allow systems to be

designed with specific Fourier (frequency-dependent) properties, including

filters, resonators, and tuners. Today these would be implemented digitally.

Low-pass filter: higher frequencies are attenuated. High-pass filter: lower frequencies are rejected.

Band-pass filter: only middle frequencies pass. Band-reject filter: middle frequencies attenuate.
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So who was Fourier and what was his insight?

Jean Baptiste Joseph Fourier (1768 – 1830)
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(Quick biographical sketch of a lucky/unlucky Frenchman)

Orphaned at 8. Attended military school hoping to join the artillery but
was refused and sent to a Benedictine school to prepare for Seminary.

The French Revolution interfered. Fourier promoted it, but he was
arrested in 1794 because he had then defended victims of the Terror.
Fortunately, Robespierre was executed first, and so Fourier was spared.

In 1795 his support for the Revolution was rewarded by a chair at the
École Polytechnique. Soon he was arrested again, this time accused of
having supported Robespierre. He escaped the guillotine twice more.

Napoleon selected Fourier for his Egyptian campaign and later elevated
him to a barony. Fourier was elected to the Académie des Sciences but
Louis XVII overturned this because of his connection to Napoleon.

He proposed his famous sine series in a paper on the theory of heat,
which was rejected at first by Lagrange, his own doctoral advisor. He
proposed the “greenhouse effect.” Believing that keeping one’s body
wrapped in blankets to preserve heat was beneficial, in 1830 Fourier died
after tripping in this condition and falling down his stairs. His name is
inscribed on the Eiffel Tower.
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Mathematical foundations and general framework:

Vector spaces, bases, linear combinations, span, linear independence,

inner products, projections, and norms

Inner product spaces
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Introduction

In this section we shall consider what it means to represent a function
f (x) in terms of other, perhaps simpler, functions.

One example among many is to construct a Fourier series of the form

f (x) =
a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)] .

How are the coefficients an and bn related to the given function f (x),
and how can we determine them?

What other representations might be used?

We shall take a quite general approach to these questions and derive the
necessary framework that underpins a wide range of such representations.
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Linear space

Definition (Linear space)
A non-empty set V of vectors is a linear space over a field F of scalars if
the following are satisfied.

1. Binary operation + such that if u, v ∈ V then u + v ∈ V

2. + is associative: for all u, v ,w ∈ V then (u + v) + w = u + (v + w)

3. There exists a zero vector, written ~0 ∈ V , such that ~0 + v = v for
all v ∈ V .

4. For all v ∈ V , there exists an inverse vector, written −v , such
that v + (−v) = ~0

5. + is commutative: for all u, v ∈ V then u + v = v + u

6. For all v ∈ V and a ∈ F then av ∈ V is defined

7. For all a ∈ F and u, v ∈ V then a(u + v) = au + av

8. For all a, b ∈ F and v ∈ V then (a + b)v = av + bv
and a(bu) = (ab)u

9. For all v ∈ V then 1v = v , where 1 ∈ F is the unit scalar.
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Choice of scalars

Two common choices of scalar fields, F, are the real numbers, R, and the
complex numbers, C, giving rise to real and complex linear spaces,
respectively.

The term vector space is a synonym for linear space.
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Linear subspace

Definition (Linear subspace)
A subset W ⊂ V is a linear subspace of V if the W is again a linear
space over the same field F of scalars.

Thus W is a linear subspace if W 6= ∅ and for all u, v ∈W and a, b ∈ F
we have that au + bv ∈W .
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Linear combinations and spans

Definition (Linear combinations)
If V is a linear space and v1, v2, . . . , vn ∈ V are vectors in V then u ∈ V
is a linear combination of v1, v2, . . . , vn if there exist
scalars a1, a2, . . . , an ∈ F such that

u = a1v1 + a2v2 + · · ·+ anvn .

We also define the span of a set of vectors as all such linear combinations:

span{v1, v2, . . . , vn} = {u ∈ V : u is a linear combination of v1, v2, . . . , vn} .

Thus, W = span{v1, v2, . . . , vn} is a linear subspace of V .
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Linear independence

Definition (Linear independence)
Let V be a linear space. The vectors v1, v2, . . . , vn ∈ V are linearly
independent if whenever

a1v1 + a2v2 + · · ·+ anvn = ~0 a1, a2, . . . , an ∈ F

then a1 = a2 = · · · = an = 0

The vectors v1, v2, . . . , vn are linearly dependent otherwise.
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Bases

Definition (Basis)
A finite set of vectors v1, v2, . . . , vn ∈ V is a basis for the linear space V
if v1, v2, . . . , vn are linearly independent and V = span{v1, v2, . . . , vn}.
The number n is called the dimension of V , written n = dim(V ).

A geometric interpretation and example: any point in the familiar 3 dim
Euclidean space R3 around us can be reached by a linear combination of
3 linearly independent vectors, such as the canonical “(x , y , z) axes.”
But this would not be possible if the 3 vectors were co-planar; then they
would not be linearly independent because any one of them could be
represented by a linear combination of the other two, and they would
span a space whose dimension is only 2. Note that linear independence of
vectors neither requires nor implies orthogonality of the vectors.

A result from linear algebra is that while there are infinitely many choices
of basis vectors, any two bases will always consist of the same number of
element vectors. Thus, the dimension of a linear space is well-defined.
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Inner products and inner product spaces

Suppose that V is either a real or complex linear space (that is, the
scalars F = R or C).

Definition (Inner product)
The inner product of two vectors u, v ∈ V , written 〈u, v〉 ∈ F, is a scalar
value satisfying

1. For each v ∈ V , 〈v , v〉 is a non-negative real number, so 〈v , v〉 ≥ 0

2. For each v ∈ V , 〈v , v〉 = 0 if and only if v = ~0

3. For all u, v ,w ∈ V and a, b ∈ F, 〈au + bv ,w〉 = a〈u,w〉+ b〈v ,w〉
4. For all u, v ∈ V then 〈u, v〉 = 〈v , u〉.

A linear space together with an inner product is called an inner product
space.

Here, 〈v , u〉 denotes the complex conjugate of the complex number
〈v , u〉. Note that for a real linear space (so, F = R) the complex
conjugate is redundant so the last condition above just says that
〈u, v〉 = 〈v , u〉 = 〈v , u〉.
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Useful properties of the inner product

Before looking at some examples of inner products there are several
consequences of the definition of an inner product that are useful in
calculations.

1. For all v ∈ V and a ∈ F then 〈av , av〉 = |a|2〈v , v〉
2. For all v ∈ V , 〈~0, v〉 = 0

3. For all v ∈ V and finite sequences of vectors u1, u2, . . . , un ∈ V and
scalars a1, a2, . . . , an then

〈
n∑

i=1

aiui , v

〉
=

n∑

i=1

ai 〈ui , v〉
〈

v ,
n∑

i=1

aiui

〉
=

n∑

i=1

ai 〈v , ui 〉
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Inner product: examples

Example (Euclidean space, Rn)
V = Rn with the usual operations of vector addition and multiplication
by a real-valued scalar is a linear space over R. Given two
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn we can define
an inner product by

〈x , y〉 =
n∑

i=1

xiyi .

Often this inner product is known as the dot product and is written x · y .

Example
Similarly, for V = Cn, we can define an inner product by

〈x , y〉 = x · y =
n∑

i=1

xiyi .
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Example (Space of continuous functions on an interval)
V = C [a, b], the space of continuous functions f : [a, b]→ C with the
standard operations of the sum of two functions and multiplication by a
scalar, is a linear space over C and we can define an inner product
for f , g ∈ C [a, b] by

〈f , g〉 =

∫ b

a

f (x)g(x)dx .

Note that now the “vectors” have become continuous functions instead.
This generalisation can be regarded as the limit in which the number of
vector elements becomes infinite, having the density of the reals. The
discrete summation over products of corresponding vector elements in
our earlier formulation of inner product then becomes, in this limit, a
continuous integral of the product of two functions instead.
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Norms

The concept of a norm is closely related to an inner product and we shall
see that there is a natural way to define a norm given an inner product.

Definition (Norm)
Let V be a real or complex linear space so that, F = R or C. A norm
on V is a function from V to R+, written ||v ||, that satisfies

1. For all v ∈ V , ||v || ≥ 0

2. ||v || = 0 if and only if v = ~0

3. For each v ∈ V and a ∈ F, ||av || = |a| ||v ||
4. For all u, v ∈ V , ||u + v || ≤ ||u||+ ||v || (the triangle inequality).

A norm can be thought of as a generalisation of the notion of distance,
where for any two vectors u, v ∈ V the number ||u − v || is the distance
between u and v .
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Norms: examples

Example (Euclidean norm)
If V = Rn or Cn then for x = (x1, x2, . . . , xn) ∈ V define

||x || = +

√√√√
n∑

i=1

|xi |2 .

Example (Uniform norm)
If V = Rn or Cn then for x = (x1, x2, . . . , xn) ∈ V define

||x ||∞ = max {|xi | : i = 1, 2, . . . , n} .

Example (Uniform norm for continuous functions)
If V = C [a, b] then for each function f ∈ V , define

||f ||∞ = max {|f (x)| : x ∈ [a, b]} .
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Cauchy-Schwarz inequality

Theorem (Cauchy-Schwarz inequality)
Let V be a real or complex inner product space with scalars F then for
all u, v ∈ V

|〈u, v〉|2 ≤ 〈u, u〉 〈v , v〉 .

Proof.
If v = ~0 then the result holds trivially. Now assume v 6= ~0 so
that 〈v , v〉 6= 0 and let λ ∈ F then

0 ≤ 〈u − λv , u − λv〉 = 〈u, u〉 − λ〈u, v〉 − λ〈v , u〉+ |λ|2〈v , v〉

Now set λ = 〈u,v〉
〈v ,v〉 so the 2nd and 4th terms above cancel, giving

0 ≤ 〈u, u〉 − |〈u, v〉|
2

〈v , v〉

and hence
|〈u, v〉|2 ≤ 〈u, u〉〈v , v〉 .
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Inner products and norms

Given an inner product space, V , with inner product 〈·, ·〉 there is a
natural choice of norm, namely, for all v ∈ V

||v || = +
√
〈v , v〉 .

Most of the properties that make this a norm follow simply from the
properties of the inner product but we shall use the Cauchy-Schwarz
inequality to establish the triangle inequality. We have,

||u + v ||2 = 〈u + v , u + v〉
= ||u||2 + 〈u, v〉+ 〈v , u〉+ ||v ||2

≤ ||u||2 + 2|〈u, v〉|+ ||v ||2

≤ ||u||2 + 2||u|| ||v ||+ ||v ||2

= (||u||+ ||v ||)2 .

Hence, the triangle inequality, ||u + v || ≤ ||u||+ ||v || holds.
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Orthogonal and orthonormal systems

Let V be an inner product space and take the natural choice of norm.

Definition (Orthogonality)
We say that u, v ∈ V are orthogonal (written u ⊥ v) if 〈u, v〉 = 0.

Definition (Orthogonal system)
A finite or infinite sequence of vectors (ui ) in V is an orthogonal system
if

1. ui 6= ~0 for all such vectors ui

2. ui ⊥ uj for all i 6= j .

Definition (Orthonormal system)
An orthogonal system is called an orthonormal system if, in
addition, ||ui || = 1 for all such vectors ui .

A vector v ∈ V such that ||v || = 1 is called a unit vector.
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Theorem
Suppose that {e1, e2, . . . , en} is an orthonormal system in the inner
product space V . If u =

∑n
i=1 aiei then ai = 〈u, ei 〉.

(Another way to say this is that in an orthonormal system,
the expansion coefficients are simply the projection coefficients.)

Proof.

〈u, ei 〉 = 〈a1e1 + a2e2 + · · ·+ anen, ei 〉
= a1〈e1, ei 〉+ a2〈e2, ei 〉+ · · ·+ an〈en, ei 〉
= ai .

Hence, if {e1, e2, . . . , en} is an orthonormal system then for
all u ∈ span{e1, e2, . . . , en} we have

u =
n∑

i=1

aiei =
n∑

i=1

〈u, ei 〉ei .
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Generalized Fourier coefficients

Let V be an inner product space and e1, e2, . . . , en an orthonormal
system (n being finite or infinite).

Definition (Generalized Fourier coefficients)
Given a vector u ∈ V , the scalars 〈u, ei 〉 (i = 1, 2, . . . , n) are called the
Generalized Fourier coefficients of u with respect to the given
orthonormal system.

These coefficients are generalized in the sense that they refer to a general
orthonormal system. It is not assumed that the vectors ei are actually
complex exponentials, the Fourier basis.
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Orthogonal projections

Suppose that V is an inner product space and e1, e2, . . . , en is an
orthonormal system. Define W = span{e1, e2, . . . , en} and let u ∈ V be
any vector. We have seen that for u ∈W

u =
n∑

i=1

〈u, ei 〉ei

but if u 6∈W then certainly

u 6=
n∑

i=1

〈u, ei 〉ei

since u is not a linear combination of the vectors e1, e2, . . . , en.
Nevertheless, there is a close connection between u and the
expression

∑n
i=1〈u, ei 〉ei .

Definition (Orthogonal projection)
For all u ∈ V we define the orthogonal projection of u in W , ũ, by

ũ =
n∑

i=1

〈u, ei 〉ei .
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Infinite orthonormal systems

We now consider the situation of an inner product space, V ,
with dim(V ) =∞ and consider orthonormal systems {e1, e2, . . .}
consisting of infinitely many vectors.

Definition (Convergence in norm)
Let {u1, u2, . . .} be an infinite sequence of vectors in the normed linear
space V and let {a1, a2, . . .} be a sequence of scalars. We say that the
series

∞∑

n=1

anun

converges in norm to w ∈ V if

lim
m→∞

||w −
m∑

n=1

anun|| = 0 .
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Closure

Consider an infinite orthonormal system {e1, e2, . . .} in an inner product
space V .

Definition (Closed)
The system is called closed in V if for all u ∈ V

lim
m→∞

||u −
m∑

n=1

〈u, en〉en|| = 0 .

Remarks on closure
I If a system is not closed then there must exist some u ∈ V such that

the linear combination
m∑

n=1

〈u, en〉en

cannot be made arbitrarily close to u, for all choices of m.
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(Remarks on closure, con’t)
I If the system is closed it may still be that the required number of

terms in the above linear combination for a “good” approximation is
too great for practical purposes.

I Seeking alternative closed systems of orthonormal vectors may
produce “better” approximations in the sense of requiring fewer
terms for a given accuracy.

I There exists a numerical method of constructing an orthonormal
system {e1, e2, . . .} such that any given set of vectors {u1, u2, . . .}
(which are often a set of multivariate data) can be represented
within it with the best possible accuracy using any specified finite
number of terms. Optimising the approximation under truncation
requires deriving the orthogonal system {e1, e2, . . .} from the data
set {u1, u2, . . .}. This is called the Karhunen-Loève transform or
alternatively the Hotelling transform or Dimensionality Reduction or
Principal Components Analysis, and it is used in statistics and in
exploratory data analysis, but it is outside the scope of this course.
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Fourier series
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Representing functions

In seeking to represent functions as linear combinations of simpler
functions we shall need to consider spaces of functions with closed
orthonormal systems.

Definition (piecewise continuous)
A function is piecewise continuous if it is continuous, except at a finite
number of points and at each such point of discontinuity, the right and
left limits exists and are finite.

The space, E , of piecewise continuous functions f : [−π, π]→ C is seen
to be a linear space, under the convention that we regard two functions
in E as identical if they are equal at all but a finite number of points.
We consider the functions over the interval [−π, π] for convenience.

For f , g ∈ E , then

〈f , g〉 =
1

π

∫ π

−π
f (x)g(x)dx

defines an inner product on E .
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A closed infinite orthonormal system for E

An important result is that

{
1√
2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .

}

is a closed infinite orthonormal system in the space E .

Here we shall just demonstrate orthonormality and omit establishing that
this system is closed.
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Writing
||f || = +

√
< f , f >

as the norm associated with our inner product, it can be establish that

|| 1√
2
||2 = 1

and similarily that for each n = 1, 2, . . .

|| sin(nx)||2 = || cos(nx)||2 = 1

and that for m, n ∈ N
I 〈 1√

2
, sin(nx)〉 = 0

I 〈 1√
2
, cos(nx)〉 = 0

I 〈sin(mx), cos(nx)〉 = 0

I 〈sin(mx), sin(nx)〉 = 0, m 6= n

I 〈cos(mx), cos(nx)〉 = 0, m 6= n.
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Fourier series

From our knowledge of closed orthonormal systems {e1, e2, . . .} we know
that we can represent any function f ∈ E by a linear combination

∞∑

n=1

〈f , en〉en .

We now turn to consider the individual terms 〈f , en〉en in the case of the
closed orthonormal system

{
1√
2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .

}
.

There are three cases, either en = 1√
2

or sin(nx) or cos(nx). Recall that

the vectors en are actually functions
in E = {f : [−π, π]→ C : f is piecewise continuous}
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If en = 1/
√

2 then

〈f , en〉en =
1

π

(∫ π

−π
f (t)

1√
2

dt

)
1√
2

=
1

2π

∫ π

−π
f (t)dt .

If en = sin(nx) then

〈f , en〉en =
1

π

(∫ π

−π
f (t) sin(nt) dt

)
sin(nx) .

If en = cos(nx) then

〈f , en〉en =
1

π

(∫ π

−π
f (t) cos(nt) dt

)
cos(nx) .
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Fourier coefficients

Thus the linear combination

∞∑

n=1

〈f , en〉en

becomes the familiar Fourier series for a function f , namely

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)]

where

an =
1

π

∫ π

−π
f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π
f (x) sin(nx) dx , n = 1, 2, 3, . . . .

Note how the constant term is written a0/2 where a0 = 1
π

∫ π
−π f (x)dx .
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Periodic functions

Our Fourier series

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)]

defines a function, g(x), say, that is 2π-periodic in the sense that

g(x + 2π) = g(x), for all x ∈ R .

Hence, it is convenient to extend f ∈ E to a 2π-periodic function defined
on R instead of being restricted to [−π, π].
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Even and odd functions

A particularly useful simplification occurs when the function f ∈ E is
either an even function, that is, for all x ,

f (−x) = f (x)

or an odd function, that is, for all x ,

f (−x) = −f (x) .

The following properties can be easily verified.

1. If f , g are even then fg is even

2. If f , g are odd then fg is even

3. If f is even and g is odd then fg is odd

4. If g is odd then for any h > 0 then
∫ h

−h g(x)dx = 0

5. If g is even then for any h > 0 then
∫ h

−h g(x)dx = 2
∫ h

0
g(x)dx .
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Even functions and cosine series

Recall that the Fourier coefficients are given by

an =
1

π

∫ π

−π
f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π
f (x) sin(nx) dx , n = 1, 2, 3, . . .

so if f is even then they become

an =
2

π

∫ π

0

f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn = 0, n = 1, 2, 3, . . . .
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Odd functions and sine series

Similarly, the Fourier coefficients

an =
1

π

∫ π

−π
f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π
f (x) sin(nx) dx , n = 1, 2, 3, . . . ,

for the case where f is an odd function become

an = 0, n = 0, 1, 2, . . .

bn =
2

π

∫ π

0

f (x) sin(nx) dx , n = 1, 2, 3, . . . .
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Fourier series: example 1

Consider f (x) = x for x ∈ [−π, π] then f is clearly odd and so we need
to calculate a sine series with coefficients, bn, n = 1, 2, . . . given by

bn =
2

π

∫ π

0

x sin(nx) dx =
2

π

{[
−x

cos(nx)

n

]π

0

+

∫ π

0

cos(nx)

n
dx

}

=
2

π

{
−π (−1)n

n
+

[
sin(nx)

n2

]π

0

}

=
2

π

{
−π (−1)n

n
+ 0

}
=

2(−1)n+1

n
.

Hence the Fourier series of f (x) = x is

∞∑

n=1

2(−1)n+1

n
sin(nx) .

Observe that the series does not agree with f (x) at x = ±π, the
endpoints of the interval — a matter that we shall return to later.
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(example 1, con’t)

Let us examine plots of the partial sums to m terms
m∑

n=1

2(−1)n+1

n
sin(nx) .

− π 0 π

π

− π

m=1 term

− π 0 π

π

− π

m=2 terms

− π 0 π

π

− π

m=4 terms

− π 0 π

π

− π

m=8 terms

− π 0 π

π

− π

m=16 terms

− π 0 π

π

− π

m=32 terms
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Fourier series: example 2

Now suppose f (x) = |x | for x ∈ [−π, π] which is clearly an even function
so we need to construct a cosine series with coefficients

a0 =
2

π

∫ π

0

xdx =
2

π

π2

2
= π

and for n = 1, 2, . . .

an =
2

π

∫ π

0

x cos(nx) dx =
2

π

{[
x sin(nx)

n

]π

0

−
∫ π

0

sin(nx)

n
dx

}

=
2

π

{[
cos(nx)

n2

]π

0

}
=

2

π

{
(−1)n − 1

n2

}
=

{
− 4
πn2 n is odd

0 n is even
.

Hence, the Fourier series of f (x) = |x | is

π

2
−
∞∑

k=1

4

π(2k − 1)2
cos ((2k − 1)x) .
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(example 2, con’t)

Let us examine plots of the partial sums to m terms

π

2
−

m∑

k=1

4

π(2k − 1)2
cos ((2k − 1)x) .

− π 0 π

π

m=1 term

− π 0 π

π

m=2 terms

− π 0 π

π

m=4 terms

− π 0 π

π

m=8 terms

− π 0 π

π

m=16 terms

− π 0 π

π

m=32 terms
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Complex Fourier series I

We have used real-valued functions sin(nx) and cos(nx) as our
orthonormal system for the linear space E but we can also use
complex-valued functions. In this case, we should amend our inner
product to

〈f , g〉 =
1

2π

∫ π

−π
f (x)g(x)dx .

A suitable orthonormal system in this case is the collection of functions

{
1, e ix , e−ix , e i2x , e−i2x , . . .

}
.

Then if f ∈ E we have a representation, known as the complex Fourier
series of f ∈ E , given by

∞∑

n=−∞
cne inx

where

cn =
1

2π

∫ π

−π
f (x)e−inxdx , n = 0,±1,±2, . . . .
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Complex Fourier series II
Euler’s formula (e ix = cos(x) + i sin(x)) gives for n = 1, 2, . . . that

e inx = cos(nx) + i sin(nx)

e−inx = cos(nx)− i sin(nx)

and e i0x = 1. Using these relations it can be shown that for n = 1, 2, . . .

cn =
an − ibn

2
, c−n =

an + ibn

2
.

Hence,
an = cn + c−n, bn = i(cn − c−n)

and

c0 =
1

2π

∫ π

−π
f (x)e−i0xdx =

1

2π

∫ π

−π
f (x)dx =

a0

2
.
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Fourier transforms
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Introduction
I We have seen how functions f : [−π, π]→ C, f ∈ E can be studied

in alternative forms using closed orthonormal systems such as

∞∑

n=−∞
cne inx

where

cn =
1

2π

∫ π

−π
f (x)e−inxdx n = 0,±1,±2, . . . .

The domain [−π, π] can be swapped for a general interval [a, b] and
the function can be regarded as L-periodic and defined for all R,
where L = (b − a) <∞ is the length of the interval.

I We shall now consider the situation where f : R→ C may be a
non-periodic function.
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Fourier transform

Definition (Fourier transform)
For f : R→ C define the Fourier transform of f to be the
function F : R→ C given by

F (ω) = F[f ](ω) =
1

2π

∫ ∞

−∞
f (x)e−iωxdx

whenever the integral exists.

Note two key changes from the Fourier series, now that the function f (x)
is no longer constrained to be periodic:

1. the bounds of integration are now [−∞,∞] instead of [−π, π], since
the function’s “period” is now unbounded – it is aperiodic.

2. the frequency parameter inside the complex exponential previously
took only integer values n, but now it must take all real values ω.

We shall use the notation F (ω) or F[f ](ω) as convenient, and refer to it
as “the representation of f (x) in the frequency (or Fourier) domain.”
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For functions f : R→ C define the two properties

1. piecewise continuous: if f is piecewise continuous on every finite
interval. Thus f may have an infinite number of discontinuities but
only a finite number in any subinterval.

2. absolutely integrable: if

∫ ∞

−∞
|f (x)|dx <∞

Let G (R) be the collection of all functions f : R→ C that are piecewise
continuous and absolutely integrable.
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Immediate properties

It may be shown that G (R) is a linear space over the scalars C and that
for f ∈ G (R)

1. F (ω) is defined for all ω ∈ R
2. F is a continuous function

3. limω→±∞ F (ω) = 0

These properties affirm the existence and nice behaviour of the Fourier
transform of all piecewise continuous and absolutely integrable functions
f : R→ C. Soon we will see many further properties that relate the
behaviour of F (ω) to that of f (x), and specifically the consequences for
F (ω) when f (x) is manipulated in certain ways.
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Example

For a > 0, let f (x) = e−a|x| then

F (ω) =
1

2π

∫ ∞

−∞
e−a|x|e−iωxdx

=
1

2π

{∫ ∞

0

e−axe−iωxdx +

∫ 0

−∞
eaxe−iωxdx

}

=
1

2π

{
−
[

e−(a+iω)x

a + iω

]∞

0

+

[
e(a−iω)x

a− iω

]0

−∞

}

=
1

2π

{
1

a + iω
+

1

a− iω

}

=
a

π(a2 + ω2)
.
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Properties

Several properties of the Fourier transform are very helpful in calculations.

First, note that by the linearity of integrals we have that if f , g ∈ G (R)
and a, b ∈ C then

F[af +bg ](ω) = aF[f ](ω) + bF[g ](ω)

and af + bg ∈ G (R).

Secondly, if f is real-valued then

F (−ω) = F (ω) .

This property is called Hermitian symmetry: the Fourier transform of a
real-valued function has even symmetry in its real part and odd symmetry
in its imaginary part. An obvious consequence is that when calculating
the Fourier transform of a real-valued function, we need only consider
positive values of ω since F (ω) determines F (−ω) by conjugacy.
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Even and odd real-valued functions

Theorem
If f ∈ G (R) is an even real-valued function then F is even and purely
real-valued. If f is an odd real-valued function then F is odd and purely
imaginary.

Proof.
Suppose that f is even and real-valued then

F (ω) =
1

2π

∫ ∞

−∞
f (x)e−iωxdx

=
1

2π

∫ ∞

−∞
f (x) [cos(ωx)− i sin(ωx)] dx

=
1

2π

∫ ∞

−∞
f (x) cos(ωx)dx .

Hence, F is real-valued and even (the imaginary part has vanished and
both f and cos(ωx) are themselves even functions). The second part
follows similarly.
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Shift and scale properties

Theorem
Let f ∈ G (R) and a, b ∈ R with a 6= 0 and define

g(x) = f (ax + b)

then g ∈ G (R) and

F[g ](ω) =
1

|a|e
iωb/aF[f ]

(ω
a

)
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Proof

Set y = ax + b so for a > 0 then

F[g ](ω) =
1

2π

∫ ∞

−∞
f (y)e−iω( y−b

a ) dy

a

and for a < 0

F[g ](ω) = − 1

2π

∫ ∞

−∞
f (y)e−iω( y−b

a ) dy

a
.

Hence,

F[g ](ω) =
1

|a|e
iωb/a 1

2π

∫ ∞

−∞
f (y)e−iωy/ady =

1

|a|e
iωb/aF[f ]

(ω
a

)
.
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Special cases

Two special cases are worth highlighting.

1. Suppose that b = 0 so g(x) = f (ax) and so

F[g ](ω) =
1

|a|F[f ]

(ω
a

)
.

2. Suppose that a = 1 so g(x) = f (x + b) and so

F[g ](ω) = e iωbF[f ](ω) .
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Theorem
For f ∈ G (R) and c ∈ R then

F[e icx f (x)](ω) = F[f ](ω − c) .

Proof.

F[e icx f (x)](ω) =
1

2π

∫ ∞

−∞
e icx f (x)e−iωxdx

=
1

2π

∫ ∞

−∞
f (x)e−i(ω−c)xdx

= F[f ](ω − c) .

Note the symmetry (sometimes called a “duality”) between the last two
properties: a shift in f (x) by b causes F[f ](ω) to be multiplied by e iωb ;
whereas multiplying f (x) by e icx causes F[f ](ω) to be shifted by c .
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Modulation property

Theorem
For f ∈ G (R) and c ∈ R then

F[f (x) cos(cx)](ω) =
F[f ](ω − c) + F[f ](ω + c)

2

F[f (x) sin(cx)](ω) =
F[f ](ω − c)−F[f ](ω + c)

2i
.

Proof.
We have that

F[f (x) cos(cx)](ω) = F[
f (x) eicx +e−icx

2

](ω)

=
1

2
F[f (x)e icx ](ω) +

1

2
F[f (x)e−icx ](ω)

=
F[f ](ω − c) + F[f ](ω + c)

2
.

Similarly, for F[f (x) sin(cx)](ω).
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A major application of the modulation property

The last two theorems are the basis for broadcast telecommunications
that encode and transmit using amplitude modulation of a carrier (e.g.
“AM radio”), for receivers that decode the AM signal using a tuner.

Radio waves propagate well through the atmosphere in a frequency range
(or “spectrum”) measured in the gigaHertz, with specific bands allocated
by government for commercial broadcasting, mobile phone operators, etc.
A band around 1 megaHertz (0.3 to 3.0 MHz) is allocated for AM radio,
and a band around 1 gigaHertz (0.3 to 3.0 GHz) for mobile phones, etc.

A human audio signal f (t) occupies less than 10 kHz, but its spectrum
F (ω) is shifted up into the MHz or GHz range by multiplying the sound
waveform f (t) with a carrier wave e ict of frequency c , yielding F (ω − c).
Its bandwidth remains 10 kHz, so many many different channels can be
allocated by choices of c . The AM signal received is then multiplied by
e−ict in the tuner, shifting its spectrum back down by c , restoring f (t).

This (“single sideband” or SSB) approach requires a complex carrier
wave e ict . Devices can be simplified by using a purely real carrier wave
cos(ct), at the cost of shifting in both directions F (ω − c) and F (ω + c)
as noted, doubling the bandwidth and power requirements.
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Example of double-sideband modulation in AM broadcasting

Left: Double-sided spectra of baseband and (modulated) AM signals.

Right: Spectrogram (frequency spectrum versus time) of an AM broadcast

shows its two sidebands (green), on either side of the central carrier (red).
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Derivatives

There are further properties relating to the Fourier transform of
derivatives that we shall state here but omit further proofs.

Theorem
If f is such that both f , f ′ ∈ G (R) then

F[f ′](ω) = iωF[f ](ω) .

It follows by concatenation that for nth-order derivatives f (n) ∈ G (R)

F[f (n)](ω) = (iω)nF[f ](ω) .

In Fourier terms, taking a derivative (of order n) is thus a kind of filtering
operation: the Fourier transform of the original function is just multiplied
by (iω)n, which emphasizes the higher frequencies while discarding the
lower frequencies.

The notion of derivative can thus be generalized to non-integer order,
n ∈ R instead of just n ∈ N. In fields like fluid mechanics, it is sometimes
useful to have the 0.5th or 1.5th derivative of a function, f (0.5) or f (1.5).
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Application of the derivative property

In a remarkable way, the derivative property converts calculus problems
(such as solving differential equations) into much easier algebra problems.
Consider for example a 2nd -order differential equation such as

af ′′(x) + bf ′(x) + cf (x) = g(x)

where g(x) is some known function or numerically sampled behaviour
whose Fourier transform G (ω) is known or can be computed. Solving this
common class of differential equation requires finding the function f (x)
for which the equation is satisfied. How can this be done?

By taking Fourier transforms of both sides of the differential equation
and applying the derivative property, we immediately get a simple
algebraic equation in terms of G (ω) = F[g ](ω) and F (ω) = F[f ](ω) :

[a(iω)2 + biω + c]F (ω) = G (ω)

Now we can express the Fourier transform of our desired solution f (x)

F (ω) =
G (ω)

−aω2 + biω + c

and wish that we could “invert” F (ω) to express f (x) !
65 / 100



Inverse Fourier transform

There is an inverse operation for recovering a function f given its Fourier
transform F (ω) = F[f ](ω) which takes the form

f (x) =

∫ ∞

−∞
F[f ](ω)e iωxdω ,

which you will recognize as the property of an orthonormal system in the
space of continuous functions, using the complex exponentials e iωx as its
basis elements.

More precisely, the following holds.

Theorem (Inverse Fourier transform)
If f ∈ G (R) then for every point x ∈ R where the one-sided derivatives
exist,

f (x−) + f (x+)

2
= lim

M→∞

∫ M

−M
F[f ](ω)e iωxdω .

66 / 100



Convolution

An important operation between two functions in signal processing, and
in many other applications, is convolution defined as follows.

Definition (Convolution)
If f and g are two functions R→ C then the convolution operation,
written f ∗ g , creating a third function, is given by

(f ∗ g)(x) =

∫ ∞

−∞
f (x − y)g(y)dy

whenever the integral exists.

Exercise: show that the convolution operation is commutative, that
is f ∗ g = g ∗ f .
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Fourier transforms and convolutions

The importance of Fourier transform techniques in signal processing
rests, in part, on the following result that leads to much simpler
descriptions and mathematical formulae in the Fourier domain.

Theorem (Convolution theorem)
For f , g ∈ G (R) then

F[f ∗g ](ω) = 2πF[f ](ω) · F[g ](ω) .

The convolution integral, whose definition explicitly required integrating
the product of two functions for all possible relative shifts between them,
to generate a new function in the variable of the amount of shift, is now
seen to correspond to the much simpler operation of multiplying together
both of their Fourier transforms.
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Proof

We have that

F[f ∗g ](ω) =
1

2π

∫ ∞

−∞
(f ∗ g)(x)e−iωxdx

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (x − y)g(y)dy

)
e−iωxdx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (x − y)e−iω(x−y)g(y)e−iωydxdy

=

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
f (x − y)e−iω(x−y)dx

)
g(y)e−iωydy

= F[f ](ω)

∫ ∞

−∞
g(y)e−iωydy

= 2πF[f ](ω) · F[g ](ω) .
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Some signal processing applications

We can now develop some important concepts and relationships, leading
to the remarkable Shannon sampling theorem (the exact representation
of continuous functions from mere samples of them at periodic points).

We first note two types of limitations on functions.

Definition (Time-limited)
A function f is time-limited if

f (x) = 0 for all |x | ≥ M

for some constant M.

Definition (Band-limited)
A function f ∈ G (R) is band-limited if

F[f ](ω) = 0 for all |ω| ≥ L

for some constant L.
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Let us first calculate the Fourier transform of the “unit pulse”:

f (x) =

{
1 a ≤ x ≤ b

0 otherwise .

F (ω) =
1

2π

∫ ∞

−∞
f (x)e−iωxdx =

1

2π

∫ b

a

e−iωxdx .

So, for ω 6= 0,F (ω) =
[

1
2π

(
e−iωx

−iω

)]b
a

= e−iωa−e−iωb

2πiω

For ω = 0 we have that F (0) = 1
2π

∫ b

a
dx = (b−a)

2π . For the special case
when a = −b with b > 0 (a zero-centred unit pulse), then

F (ω) =

{
e iωb−e−iωb

2πiω = sin(ωb)
ωπ ω 6= 0

b
π ω = 0

This important wiggly function, the Fourier transform of the unit pulse, is
called a sinc function.
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On the previous slide, the sinc was a function of frequency. But a sinc
function of x is also important, because if we wanted to strictly low-pass
filter a signal, then we would convolve it with a sinc function whose
“frequency parameter” corresponds to the cut frequency.

The sinc function plays an important role in the Sampling Theorem,
because it allows us to know exactly what a (strictly low-pass) signal
does even between the points at which we have sampled it. (This is
rather amazing; it sounds like something impossible!)

Note from the functional form that it has periodic zero-crossings, except
at its peak where the interval between zeroes is doubled. Note also that
the magnitude of oscillations is damped hyperbolically (as 1/x).
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Remarks on Shannon’s sampling theorem
I The theorem says that functions which are strictly band-limited by

some upper frequency L (that is, F[f ](ω) = 0 for |ω| > L) are
completely determined just by their values at evenly spaced points
a distance π

L apart. (Proof given in Information Theory and Coding.)

I Moreover, we may recover the function exactly given only its values
at this sequence of points. It is remarkable that a countable, discrete
sequence of values suffices to determine completely what happens
between these discrete samples. The “filling in” is achieved by
superimposed sinc functions, weighted by the sample values.

I It may be shown that the sinc functions

sin(Lx − nπ)

Lx − nπ

for n ∈ Z form an orthonormal system with inner product

〈f , g〉 =
L

π

∫ ∞

−∞
f (x)g(x)dx .
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Discrete Fourier Transforms
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We now shift attention from functions defined on intervals or on the
whole of R to discrete sequences of values f [0], f [1], . . . , f [N − 1].

An important result in this area of discrete transforms is that the
vectors {e0, e1, . . . , eN−1} form an orthogonal system in the space CN

with the usual inner product where the nth component of ek is given by
(ek)n = e2πink/N for n = 0, 1, 2, . . . ,N − 1 and k = 0, 1, 2, . . . ,N − 1.

The k th vector ek has N elements and is a discretely sampled complex
exponential with frequency k . Its nth element is an N th root of unity,
namely the (nk)th power of a primitive N th root of unity:

Im

Re
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Applying the usual inner product

〈u, v〉 =
N−1∑

n=0

u[n]v [n]

it may be shown that the squared norm:

||ek ||2 = 〈ek , ek〉 = N .

In fact, using {e0, e1, . . . , eN−1} we can represent any
sequence f = (f [0], f [1], . . . , f [N − 1]) ∈ CN by

f =
1

N

N−1∑

k=0

〈f , ek〉ek .

Recall the generalized Fourier coefficients that we studied earlier.
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Definition (Discrete Fourier Transform/DFT)
The sequence F [k], k ∈ Z, defined by

F [k] = 〈f , ek〉 =
N−1∑

n=0

f [n]e−2πink/N

is called the N-point Discrete Fourier Transform of f [n].

Similarly, for n = 0, 1, 2, . . . ,N − 1, we have the inverse transform

f [n] =
1

N

N−1∑

k=0

F [k]e2πink/N .

Note that in both of these discrete series defining the Discrete Fourier
Transform and its inverse, all of the complex exponential values needed
are (nk) powers of a primitive N th root of unity, e2πi/N . This is the
crucial observation that underlies Fast Fourier Transform (FFT)
algorithms.
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Periodicity

Note that the sequence F [k] has period N since

F [k + N] =
N−1∑

n=0

f [n]e−2πin(k+N)/N =
N−1∑

n=0

f [n]e−2πink/N = F [k]

using the relation

e−2πin(k+N)/N = e−2πink/Ne−2πin = e−2πink/N .

Importantly, note that a complete DFT requires as many (N) Fourier
coefficients F [k] to be computed as the number (N) of values in the
sequence f [n] whose DFT we are computing.
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Properties of the DFT

The DFT satisfies a range of properties similar to those of the FT
relating to linearity, and shifts in either the n or k domain.

However, the convolution operation is defined a little differently.

Definition (Cyclical convolution)
The cyclical convolution of two periodic sequences f [n] and g [n] of
period N is defined as

(f ∗ g)[n] =
N−1∑

m=0

f [m]g [n −m] .

Implicitly, because of periodicity, if [n −m] is negative it is taken mod N
when only N values are explicit.

It can then be shown that the DFT of f ∗ g is the product F [k]G [k]
where F and G are the DFTs of f and g , respectively.
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Fast Fourier Transform algorithm
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Fast Fourier Transform

The Fast Fourier Transform is not a new transform but a particular
numerical algorithm for computing the DFT.

Since the explicit definition of each Fourier coefficient in the DFT is

F [k] =
N−1∑

n=0

f [n]e−2πink/N

= f [0] + f [1]e−2πik/N + · · ·+ f [N − 1]e−2πik(N−1)/N

we can see that in order to compute one Fourier coefficient F [k], using
the complex exponential of frequency k , we need to do about 2N
(complex) additions and multiplications. To compute all N such Fourier
coefficients F [k] in this way for k = 0, 1, 2, . . . ,N − 1 would require
about 2N2 such operations. Since the number N of samples in a typical
audio signal or pixels in an image whose DFT we may need to compute
may be O(106), clearly it would be very cumbersome to have to perform
O(N2) = O(1012) multiplications. Fortunately, very efficient Fast Fourier
Transform (FFT) algorithms exist that require instead only O(N log N)
such operations.
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We shall not derive any of the details here but instead give an impression
of how such methods operate. Recall that all the multiplications required
in the DFT involve the N th roots of unity, and that these in turn are all
powers of a primitive N th root of unity e2πi/N .

Im

Re

The same points e2πikn/N on the unit circle in the complex plane are used
again and again, when the nth value in our sequence f [n] is multiplied by
the nth value of a complex exponential e2πikn/N having frequency k, and
added together for all n, when computing a DFT coefficient F [k]. It is
therefore possible to group together common terms associatively and
perform far fewer complex multiplications, on such sums of terms.
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Extensions to higher dimensions

All of the Fourier methods we have discussed so far have involved only
functions or sequences of a single variable. Their Fourier representations
have correspondingly also been functions or sequences of a single variable.

But all Fourier techniques can be generalized and apply also to functions
of any number of dimensions. For example, images (when pixelized) are
discrete two-dimensional sequences f [n,m] giving a pixel value at row n
and column m. Their Fourier components are 2D complex exponentials
having the form f [n,m] = e2πi(kn/N+jm/M) for an image of dimensions
NxM pixels, and they have the following “plane wave” appearance with
both a “spatial frequency”

√
k2 + j2 and an orientation arctan (j/k):

Similarly, crystallography uses 3D Fourier methods to infer atomic lattice
structure from the phases of X-rays scattered by a slowly rotating crystal.
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Wavelet Transforms
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Wavelets

Wavelets are further bases for representing functions, that have received
much interest in both theoretical and applied fields over the past 25 years.
They combine aspects of the Fourier (frequency-based) approaches with
restored locality, because wavelets are size-specific local undulations.

The approach fits into the general scheme of expanding a function f (x)
using orthonormal functions. Dyadic transformations of some generating
wavelet Ψ(x) spawn an orthonormal wavelet basis Ψjk(x), for expansions
of functions f (x) by doubly-infinite series with wavelet coefficients cjk :

f (x) =
∞∑

j=−∞

∞∑

k=−∞

cjkΨjk(x)

The wavelets Ψjk(x) are generated by shifting and scaling operations
applied to a single original function Ψ(x), known as the mother wavelet.

The orthonormal “daughter wavelets” are all dilates and translates of
their mother (hence “dyadic”), and are given for integers j and k by

Ψjk(x) = 2j/2Ψ(2jx − k)
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The Haar wavelet

An elementary example is the Haar wavelet, whose mother function is
both localized and bipolar with a particular scale, defined by

Ψ(x) =





1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1 ,

0 otherwise .

−1

1
Ψ(x)

−2 −1 1 2
x

0
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Wavelet dilations and translations

The Haar mother wavelet is localized and has a width (or scale) of 1.
The dyadic dilates of Ψ(x), namely,

. . . ,Ψ(2−2x),Ψ(2−1x),Ψ(x),Ψ(2x),Ψ(22x), . . .

have widths . . . , 22, 21, 1, 2−1, 2−2, . . . respectively.
Since the dilate Ψ(2jx) has width 2−j , its translates

Ψ(2jx − k) = Ψ(2j(x − k2−j)), k = 0,±1,±2, . . .

cover the whole x-axis. The computed coefficients cjk constitute a
Wavelet Transform of the function f (x). There are many different
possible choices for the mother wavelet function (besides the Haar),
tailored for different purposes. Of course, the wavelet coefficients cjk
that result will be different for those different choices of wavelets.

Just as with Fourier transforms, there are fast wavelet implementations
that exploit structure. Typically they work in a coarse-to-fine pyramid,
with each successively finer scale of wavelets applied to the difference
between a down-sampled version of the original function and its full
representation by all preceding coarser scales of wavelets.
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Interpretation of cjk

How should we intrepret the wavelet coefficients cjk?

Since the Haar wavelet function Ψ(2jx − k) vanishes except when

0 ≤ 2jx − k < 1 , that is k2−j ≤ x < (k + 1)2−j ,

we see that cjk gives us information about the behaviour of f near the
point x = k2−j measured on the scale of 2−j .

For example, the coefficients c(−10,k), k = 0,±1,±2, . . . correspond to
variations of f that take place over intervals of length 210 = 1024, while
the coefficients c(10,k) k = 0,±1,±2, . . . correspond to fluctuations of f
over intervals of length 2−10.

These observations help explain how wavelet representations extract local
structure over many different scales of analysis and can be exceptionally
efficient schemes for representing functions. This makes them powerful
tools for analyzing signals, compressing images, extracting structure and
recognizing patterns.
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Properties of naturally arising data

Much naturally arising data is better represented and processed using
wavelets, because wavelets are localized and better able to cope with
discontinuities and with structures of limited extent. Whereas every
Fourier coefficient is computed over the entire extent of the input signal
or function (i.e. the bounds of the Fourier integral span the entire input
domain), each wavelet has its own local domain, and independent
wavelet coefficients are computed for different localities.

Another common aspect of naturally arising data is self-similarity across
scales, similar to the fractal property. For example, nature abounds with
concatenated branching structures at successive size scales. The dyadic
generation of wavelet bases mimics this self-similarity.

Finally, wavelets are tremendously good at data compression. This is
because they decorrelate data locally: the information is statistically
concentrated in just a few wavelet coefficients. The old standard image
compression tool JPEG was based on squarely truncated sinusoids. The
new JPEG-2000, based on Daubechies wavelets, is a superior compressor.
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Case study in image compression: comparison between
patchwise Fourier (DCT) and wavelet (DWT) encodings

In 1994, the JPEG Standard was published for image compression using
local 2D Fourier transforms (actually discrete cosine transforms [DCT]
since images are real, not complex) on small [8× 8] tiles of pixels. Each
transform produces 64 coefficients and so is not itself a reduction in data.

But because high spatial frequency coefficients can be quantized much
more coarsely than low ones for satisfied human perceptual consumption,
a quantization table allocates bits to the Fourier coefficients accordingly.
The higher frequency coefficients are resolved with fewer bits (often 0).

By reading out these quantized Fourier coefficients in a low-frequency to
high-frequency sequence, long runs of 0’s arise which allow run-length
codes (Huffman coding) to be very efficient. ∼ 10:1 image compression
causes little perceived loss. Both encoding and decoding (compression
and decompression) are easily implemented at video frame-rates.

ISO/IEC 10918: JPEG Still Image Compression Standard.

JPEG = Joint Photographic Experts Group http://www.jpeg.org/
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(Image compression case study, continued: DCT and DWT)

Although JPEG performs well on natural images at compression factors
below about 20:1, it suffers from visible block quantization artifacts at
more severe levels. The DCT basis functions are just square-truncated
sinusoids, and if an entire (8× 8) pixel patch must be represented by just
one (or few) of them, then the blocking artifacts become very noticeable.

In 2000 a more sophisticated compressor was developed using encoders
like the Daubechies 9/7 wavelet shown below. Across multiple scales and
over a lattice of positions, wavelet inner products with the image yield
coefficients that constitute the Discrete Wavelet Transform (DWT): this
is the basis of JPEG-2000. It can be implemented by recursively filtering
and downsampling the image vertically and horizontally in a scale pyramid.

ISO/IEC

15444: JPEG2000 Image Coding System. http://www.jpeg.org/JPEG2000.htm
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Comparing image compressor bit-rates: DCT vs DWT

Whilst a monochrome .bmp image assigns 1 byte per pixel and thus has
nominally a greyscale resolution of 8 bits per pixel [8 bpp], compressed
formats deliver much lower bpp rates. These are calculated by dividing
the total compressed image filesize (in bit count, not bytes) by the total
number of pixels in the image. This benchmark image is uncompressed.
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Comparing image compressor bit-rates: DCT vs DWT

Left: JPEG compression by 20:1 (Q-factor 10), 0.4 bpp. The foreground water
already shows some blocking artifacts, and some patches of the water texture
are obviously represented by a single vertical cosine in an (8 × 8) pixel block.

Right: JPEG-2000 compression by 20:1 (same reduction factor), 0.4 bpp. The

image is smoother and does not show the blocking quantization artifacts.
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Comparing image compressor bit-rates: DCT vs DWT

Left: JPEG compression by 50:1 (Q-factor 3), 0.16 bpp. The image shows
severe quantization artifacts (local DC terms only) and is rather unacceptable.

Right: JPEG-2000 compression by 50:1 (same reduction factor), 0.16 bpp. At

such low bit rates, the Discrete Wavelet Transform gives much better results.
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Other classes of wavelets
I Classically, when Yves Meyer gave the original formulation of

wavelets (“ondelettes”) in a 1985 Bourbaki seminar in Paris, there
were 5 strong requirements: the wavelets had all to be dilates and
translates of each other, they had to have strictly compact support
(equal to 0 outside of some interval), all their derivatives had to
exist everywhere, and they had to form an orthonormal basis.

I Today, it is much easier to be wavelet. One of Meyer’s students,
Stefan Mallat, has said any zero-mean function can be a wavelet.

I In multiple dimensions, we add other transformations based on
group theory. For example, for image analysis and vision, we use
2D wavelets that are also rotates of each other in the plane.

I One of the most useful features of wavelets is the ease with which
the wavelet functions can be adapted for given scientific problems.

I Many applied fields have started to make use of wavelets, including
astronomy, acoustics, signal and image processing, neurophysiology,
music, magnetic resonance imaging, speech discrimination, optics,
fractals, turbulence, EEG, ECG, earthquake prediction, radar, etc.
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Gabor real and imaginary parts resemble Newton kernels in the calculus

Gabor Wavelets as 1st- and 2nd-order Differential Operators

Re{e−x2ei3x} = e−x2 cos(3x)

2nd finite difference kernel: −f ′′(xi)
≈ −f (xi−1) + 2f (xi)− f (xi+1)

Im{e−x2ei3x} = e−x2 sin(3x)

1st finite difference kernel: f ′(xi)
≈ −f (xi) + f (xi+1)
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Wavelets in computer vision and pattern recognition

2D Gabor wavelets (defined as a complex exponential plane-wave times a
Gaussian windowing function) are extensively used in computer vision.

As multi-scale image encoders, and as pattern detectors, they form a
complete basis which can extract image structure with a vocabulary of:
location, scale, spatial frequency, orientation, and phase (or symmetry).
This collage shows a 4-octave ensemble of such wavelets, differing in size
(or spatial frequency) by factors of two, having five sizes, six orientations,
and two quadrature phases (even/odd), over a lattice of spatial positions.
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Complex natural patterns are very well represented in such terms.

The upper panels show two iris images (acquired in near-infrared light);
caucasian iris on the left, and oriental iris on the right.

The lower panels show the images reconstructed just from combinations
of the 2D Gabor wavelets spanning 4 octaves seen in the previous slide.
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Gabor wavelets are the basis for Iris Recognition systems
Phase-Quadrant Demodulation Code

[0, 0] [1, 0]

[1, 1][0, 1]

Re

Im

hRe = 1 if Re
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ ≥ 0

hRe = 0 if Re
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ < 0

hIm = 1 if Im
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2
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hIm = 0 if Im
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ < 0
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Score Distribution for 200 Billion Different Iris Comparisons

200,027,808,750 pair comparisons

among 632,500 different irises

mean = 0.499, stnd.dev. = 0.034
solid curve:  binomial distribution
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Wavelets are much more ubiquitous than you may realize!

At many airports worldwide, the IRIS system (Iris Recognition Immigration System)

allows registered travellers to cross borders without having to present their passports,

or make any other claim of identity. They just look at an iris camera, and (if they are

already enrolled), the border barrier opens within seconds. Similar systems are in place

for many other applications. The Government of India is currently enrolling the iris

patterns of all its 1.2 Billion citizens as a means to access entitlements and benefits

(the UIDAI slogan is “To give the poor an identity”), and to enhance social inclusion.
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