
Exercise Problems: Information Theory and Coding

Exercise 9

1. An error-correcting Hamming code uses a 7 bit block size in order to guarantee the detection,
and hence the correction, of any single bit error in a 7 bit block. How many bits are used for
error correction, and how many bits for useful data? If the probability of a single bit error
within a block of 7 bits is p = 0.001, what is the probability of an error correction failure, and
what event would cause this?

2. What class of continuous signals has the greatest possible entropy for a given variance (or
power level)? What probability density function describes the excursions taken by such signals
from their mean value?

3. What does the Fourier power spectrum of this class of signals look like? How would you de-
scribe the entropy of this distribution of spectral energy?

4. Suppose that a continuous communication channel of bandwidth W Hertz and a high signal-
to-noise ratio, which is perturbed by additive white Gaussian noise of constant power spectral
density, has a channel capacity of C bits per second. Approximately how much would C be
degraded if suddenly the added noise power became 8 times greater?

Solution:

1. An error-correcting Hamming code with a 7 bit block size uses 3 bits for error correction and
4 bits for data transmission. It would fail to correct errors that affected more than one bit in
a block of 7; but in the example given, with p = 0.001 for a single bit error in a block of 7, the
probability of two bits being corrupted in a block would be about 1 in a million.

2. The family of continuous signals having maximum entropy per variance (or power level) are
Gaussian signals. Their probability density function for excursions x around a mean value µ,
when the power level (or variance) is σ2, is:

p(x) =
1

√
2πσ

e−(x−µ)2/2σ2

3. The Fourier power spectrum of this class of signals is flat, or white. Hence these signals cor-
respond to “white noise.” The distribution of spectral energy has uniform probability over all
possible frequencies, and therefore this continuous distribution has maximum entropy.

4. The channel capacity C in bits per second would be reduced by about 3W , where W is the
channel’s bandwidth in Hertz, if the noise power level increased eight-fold. This is because the
channel capacity, in bits per second, is

C = W log2

(

1 +
P

N0W

)
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If the signal-to-noise ratio (the term inside the logarithm) were degraded by a factor of 8, then
its logarithm is reduced by -3, and so the overall capacity C is reduced by 3W . The new
channel capacity C ′ could be expressed either as:

C ′ = C − 3W

or as a ratio that compares it with the original undegraded capacity C:

C ′

C
= 1−

3W

C

Exercise 10

1. Consider a noiseless analog communication channel whose bandwidth is 10,000 Hertz. A signal
of duration 1 second is received over such a channel. We wish to represent this continuous
signal exactly, at all points in its one-second duration, using just a finite list of real numbers
obtained by sampling the values of the signal at discrete, periodic points in time. What is
the length of the shortest list of such discrete samples required in order to guarantee that we
capture all of the information in the signal and can recover it exactly from this list of samples?

2. Name, define algebraically, and sketch a plot of the function you would need to use in order
to recover completely the continuous signal transmitted, using just such a finite list of discrete
periodic samples of it.

3. Explain why smoothing a signal, by low-pass filtering it before sampling it, can prevent alias-
ing. Explain aliasing by a picture in the Fourier domain, and also show in the picture how
smoothing solves the problem. What would be the most effective low-pass filter to use for this
purpose? Draw its spectral sensitivity.

4. Consider a noisy analog communication channel of bandwidth Ω, which is perturbed by additive
white Gaussian noise whose power spectral density is N0. Continuous signals are transmitted
across such a channel, with average transmitted power P (defined by their expected variance).
What is the channel capacity, in bits per second, of such a channel?

5. If a continuous signal f(t) is modulated by multiplying it with a complex exponential wave
exp(iωt) whose frequency is ω, what happens to the Fourier spectrum of the signal?

Name a very important practical application of this principle, and explain why modulation
is a useful operation.

How can the original Fourier spectrum later be recovered?

6. Which part of the 2D Fourier Transform of an image, the amplitude spectrum or the phase
spectrum, is indispensable in order for the image to be intelligible?

Describe a demonstration that proves this.
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Solution:

1. 2ωT = 20,000 discrete samples are required.

2. The sinc function is required to recover the signal from its discrete samples, defined as:

sinc(x) =
sin(πx)

πx
. Each sample point is replaced by scaled copies of this function.

3. The Nyquist Sampling Theorem tells us that aliasing results when the signal contains Fourier
components higher than one-half the sampling frequency. Thus aliasing can be avoided by
removing such frequency components from the signal, by low-pass filtering it, before sampling
the signal. The ideal low-pass filter for this task would have a strict cut-off at frequencies
starting at (and higher than) one-half the planned sampling rate.
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4. The channel capacity is Ω log2

(

1 +
P

N0Ω

)

bits per second.

5. Modulation of the continuous signal by a complex exponential wave exp(iωt) will shift its entire
frequency spectrum upwards by an amount ω.

All of AM broadcasting is based on this principle. It allows many different communications
channels to be multi-plexed into a single medium, like the electromagnetic spectrum, by shift-
ing different signals up into separate frequency bands.

The original Fourier spectrum of each of these signals can then be recovered by demodulating
them down (this removes each AM carrier). This is equivalent to multiplying the transmitted
signal by the conjugate complex exponential, exp(−iωt).

6. The phase spectrum is the indispensable part. This is demonstrated by crossing the amplitude
spectrum of one image with the phase spectrum of another one, and vice versa. The new image
that you see looks like the one whose phase spectrum you are using, and not at all like the one
whose amplitude spectrum you’ve got.

Exercise 11

The signal-to-noise ratio SNR of a continuous communication channel might be different in dif-
ferent parts of its frequency range. For example, the noise might be predominantly high frequency
hiss, or low frequency rumble. Explain how the information capacity C of a noisy continuous com-
munication channel, whose available bandwidth spans from frequency ω1 to ω2, may be defined in
terms of its signal-to-noise ratio as a function of frequency, SNR(ω). Define the bit rate for such a
channel’s information capacity, C, in bits/second, in terms of the SNR(ω) function of frequency.

(Note: This question asks you to generalise beyond the material lectured.)

Solution:

The information capacity C of any tiny portion ∆ω of this noisy channel’s total frequency band,
near frequency ω where the signal-to-noise ratio happens to be SNR(ω), is:

C = ∆ω log2(1 + SNR(ω))

in bits/second. Integrating over all of these small ∆ω bands in the available range from ω1 to ω2,
the total capacity in bits/second of this variable-SNR channel is therefore:

C =

∫ ω2

ω1
log2(1 + SNR(ω))dω
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Exercise 12

(a) Explain why the real-part of a 2D Gabor wavelet has a 2D Fourier transform with two
peaks, not just one, as shown in the right panel of the Figure below.
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(b) Show that the set of all Gabor wavelets is closed under convolution, i.e. that the convolution
of any two Gabor wavelets is just another Gabor wavelet. [HINT: This property relates to the
fact that these wavelets are also closed under multiplication, and that they are also self-Fourier.
You may address this question for just 1D wavelets if you wish.]

(c) Show that the family of sinc functions used in the Nyquist Sampling Theorem,

sinc(x) =
sin(λx)

λx

is closed under convolution. Show further that when two different sinc functions are convolved,
the result is simply whichever one of them had the lower frequency, i.e. the smaller λ.

(d) For each of the four classes of signals in the left table below, identify its characteristic
spectrum from the right table. (“Continuous” here means supported on the reals, i.e. at least
piecewise continuous but not necessarily everywhere differentiable. “Periodic” means that under
multiples of some finite shift the function remains unchanged.) Give your answer just in the
form 1-A, 2-B, etc. Note that you have 24 different possibilities.

Class Signal Type

1. continuous, aperiodic

2. continuous, periodic

3. discrete, aperiodic

4. discrete, periodic

Class Spectral Characteristic

A. continuous, aperiodic

B. continuous, periodic

C. discrete, aperiodic

D. discrete, periodic

(e) Define the Kolmogorov algorithmic complexity K of a string of data. What relationship
is to be expected between the Kolmogorov complexity K and the Shannon entropy H for a
given set of data? Give a reasonable estimate of the Kolmogorov complexity K of a fractal,
and explain why it is reasonable.

5



Solution:

(a) The real-part of a 2D Gabor wavelet, as shown in the figure, has the functional form

f(x, y) = e−(x2/α2+y2/β2) cos(u0x+ v0y)

But using the identity cos(θ) = 1
2(e

iθ + e−iθ) we see that the expression above is actually twice
the sum of two complex Gabor wavelets, namely

g(x, y) = e−(x2/α2+y2/β2)ei(u0x+v0y)

and
h(x, y) = e−(x2/α2+y2/β2)e−i(u0x+v0y)

These each have a 2D Gaussian Fourier transform, one centred at (u0, v0) and the other centred
at (−u0,−v0), added together as seen in the figure.

(b) The Fourier Transform of a 1-D Gabor wavelet has exactly the same functional form, but
with the parameters simply interchanged or inverted:

F (k) = e−(k−k0)2a2eix0(k−k0)

(In other words, Gabor wavelets are self-Fourier.) It is obvious that the product of any two Ga-
bor wavelets f(x) will still have the functional form of a Gabor wavelet. Therefore the product’s
Fourier transform will also preserve this general form. Hence (using the convolution theorem of
Fourier analysis), it follows that the family of Gabor wavelets are also closed under convolution.

(c) When two functions are convolved together, their Fourier transforms are just multiplied to-
gether to give the Fourier transform of the result of the convolution. Conveniently, the Fourier
transform of any sinc function as given with frequency parameter λ is a (zero-centred) rectan-
gular pulse function whose width is 2λ and 0 outside. Multiplying two such pulse functions
together just creates another pulse function, and therefore the result of the convolution is again
just a sinc function. But more specifically, because the product of the two pulse functions in
frequency is simply whichever one of them was narrower, the resulting sinc function is just
whichever one had the smaller λ (lower frequency).

(d)
1-A. Example: a Gaussian function, whose Fourier transform is also Gaussian.
2-C. Example: a sinusoid, whose Fourier transform is two discrete delta functions.
3-B. Example: a delta function, whose Fourier transform is a complex exponential.
4-D. Example: a comb sampling function, whose Fourier Transform is also a comb function.

(e) The Kolmogorov algorithmic complexity K of a string of data is defined as the length of the
shortest binary program that can generate the string. Thus the data’s Kolmogorov complexity
is its “Minimal Description Length.”

The expected relationship between the Kolmogorov complexity K of a set of data, and its
Shannon entropy H, is that approximately K ≈ H.
Because fractals can be generated by extremely short programs, namely iterations of a mapping,
such patterns have Kolmogorov complexity of nearly K ≈ 0.
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