
˜ Topic VIII ˜
Data abstraction and modularity

SML Modulesa

References:

� Chapter 7 of ML for the working programmer (2ND

EDITION) by L. C. Paulson. CUP, 1996.

aLargely based on an Introduction to SML Modules by Claudio Russo

<http://research.microsoft.com/~crusso>.

187

� The Standard ML Basis Library edited by E. R. Gansner

and J. H. Reppy. CUP, 2004.

[A useful introduction to SML standard libraries, and a

good example of modular programming.]

� <http://www.standardml.org/>

188

The Core and Modules languages

SML consists of two sub-languages:

� The Core language is for programming in the small, by

supporting the definition of types and expressions

denoting values of those types.

� The Modules language is for programming in the large,

by grouping related Core definitions of types and

expressions into self-contained units, with descriptive

interfaces.

The Core expresses details of data structures and

algorithms. The Modules language expresses software

architecture. Both languages are largely independent.

189

The Modules language
Writing a real program as an unstructured sequence of Core

definitions quickly becomes unmanageable.

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i =

if i = zero then b

else f (iter b f (i-1))

...

(* thousands of lines later *)

fun even (n:nat) = iter true not n

The SML Modules language lets one split large programs into

separate units with descriptive interfaces.

190

SML Modules
Signatures and structures

An abstract data type is a type equipped with a set of

operations, which are the only operations applicable to that

type.

Its representation can be changed without affecting the rest

of the program.

� Structures let us package up declarations of related

types, values, and functions.

� Signatures let us specify what components a structure

must contain.

191

Structures
In Modules, one can encapsulate a sequence of Core type

and value definitions into a unit called a structure.

We enclose the definitions in between the keywords

struct . . . end.

Example: A structure representing the natural numbers, as

positive integers.

struct

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i = if i = zero then b

else f (iter b f (i-1))

end

192

The dot notation

One can name a structure by binding it to an identifier.

structure IntNat =

struct

type nat = int

...

fun iter b f i = ...

end

Components of a structure are accessed with the dot

notation.

fun even (n:IntNat.nat) = IntNat.iter true not n

NB: Type IntNat.nat is statically equal to int. Value

IntNat.iter dynamically evaluates to a closure.

193

Nested structures

Structures can be nested inside other structures, in a hierarchy.

structure IntNatAdd =

struct

structure Nat = IntNat

fun add n m = Nat.iter m Nat.succ n

end

...

fun mult n m =

IntNatAdd.Nat.iter IntNatAdd.Nat.zero (IntNatAdd.add m) n

The dot notation (IntNatAdd.Nat) accesses a nested structure.

Sequencing dots provides deeper access (IntNatAdd.Nat.zero).

Nesting and dot notation provides name-space control.

194

Concrete signatures

Signature expressions specify the types of structures by

listing the specifications of their components.

A signature expression consists of a sequence of

component specifications, enclosed in between the

keywords sig . . . end.

sig type nat = int

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

This signature fully describes the type of IntNat.

The specification of type nat is concrete: it must be int.

195

Opaque signatures

On the other hand, the following signature

sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

specifies structures that are free to use any implementation for

type nat (perhaps int, or word, or some recursive datatype).

This specification of type nat is opaque.

196

Example: Polymorphic functional stacks.

signature STACK =

sig

exception E

type ’a reptype (* <-- INTERNAL REPRESENTATION *)

val new: ’a reptype

val push: ’a -> ’a reptype -> ’a reptype

val pop: ’a reptype -> ’a reptype

val top: ’a reptype -> ’a

end ;

197

structure MyStack: STACK =

struct

exception E ;

type ’a reptype = ’a list ;

val new = [] ;

fun push x s = x::s ;

fun split(h::t) = (h , t)

| split _ = raise E ;

fun pop s = #2(split s) ;

fun top s = #1(split s) ;

end ;

198

val MyEmptyStack = MyStack.new ;

val MyStack0 = MyStack.push 0 MyEmptyStack ;

val MyStack01 = MyStack.push 1 MyStack0 ;

val MyStack0’ = MyStack.pop MyStack01 ;

MyStack.top MyStack0’ ;

val MyEmptyStack = [] : ’a MyStack.reptype

val MyStack0 = [0] : int MyStack.reptype

val MyStack01 = [1,0] : int MyStack.reptype

val MyStack0’ = [0] : int MyStack.reptype

val it = 0 : int

199

Named and nested signatures

Signatures may be named and referenced, to avoid repetition:

signature NAT =

sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

Nested signatures specify named sub-structures:

signature Add =

sig structure Nat: NAT (* references NAT *)

val add: Nat.nat -> Nat.nat -> Nat.nat

end

200

Signature inclusion

To avoid nesting, one can also directly include a signature

identifier:

sig include NAT

val add: nat -> nat ->nat

end

NB: This is equivalent to the following signature.

sig type nat

val zero: nat

val succ: nat -> nat

val ’a iter: ’a -> (’a->’a) -> nat -> ’a

val add: nat -> nat -> nat

end

201

Signature matching

Q: When does a structure satisfy a signature?

A: The type of a structure matches a signature whenever it

implements at least the components of the signature.

• The structure must realise (i.e. define) all of the opaque

type components in the signature.

• The structure must enrich this realised signature,

component-wise:

⋆ every concrete type must be implemented equivalently;

⋆ every specified value must have a more general type

scheme;

⋆ every specified structure must be enriched by a

substructure.

202

Properties of signature matching

� The components of a structure can be defined in a

different order than in the signature; names matter but

ordering does not.

� A structure may contain more components, or

components of more general types, than are specified

in a matching signature.

� Signature matching is structural. A structure can match

many signatures and there is no need to pre-declare its

matching signatures (unlike “interfaces” in Java and C#).

� Although similar to record types, signatures actually

play a number of different roles.

203

Subtyping

Signature matching supports a form of subtyping not found in

the Core language:

� A structure with more type, value, and structure

components may be used where fewer components

are expected.

� A value component may have a more general type

scheme than expected.

204

Using signatures to restrict access

The following structure uses a signature constraint to provide

a restricted view of IntNat:

structure ResIntNat =

IntNat : sig type nat

val succ : nat->nat

val iter : nat->(nat->nat)->nat->nat

end

NB: The constraint str:sig prunes the structure str

according to the signature sig:

� ResIntNat.zero is undefined;

� ResIntNat.iter is less polymorphic that IntNat.iter.

205

Transparency of :

Although the : operator can hide names, it does not conceal

the definitions of opaque types.

Thus, the fact that ResIntNat.nat = IntNat.nat = int remains

transparent.

For instance the application ResIntNat.succ(~3) is still

well-typed, because ~3 has type int . . . but ~3 is negative, so

not a valid representation of a natural number!

206

SML Modules
Information hiding

In SML, we can limit outside access to the components of

a structure by constraining its signature in transparent or

opaque manners.

Further, we can hide the representation of a type by means

of an abstype declaration.

The combination of these methods yields abstract structures.

207

Using signatures to hide
the identity of types

With different syntax, signature matching can also be used to

enforce data abstraction:

structure AbsNat =

IntNat :> sig type nat

val zero: nat

val succ: nat->nat

val ’a iter: ’a->(’a->’a)->nat->’a

end

The constraint str :> sig prunes str but also generates a

new, abstract type for each opaque type in sig.

208

� The actual implementation of AbsNat.nat by int is

hidden, so that AbsNat.nat 6= int.

AbsNat is just IntNat, but with a hidden type

representation.

� AbsNat defines an abstract datatype of natural numbers:

the only way to construct and use values of the abstract

type AbsNat.nat is through the operations, zero, succ,

and iter.

E.g., the application AbsNat.succ(~3) is ill-typed: ~3 has

type int, not AbsNat.nat. This is what we want, since ~3

is not a natural number in our representation.

In general, abstractions can also prune and specialise

components.

209

1. Opaque signature constraints

structure MyOpaqueStack :> STACK = MyStack ;

val MyEmptyOpaqueStack = MyOpaqueStack.new ;

val MyOpaqueStack0 = MyOpaqueStack.push 0 MyEmptyOpaqueStack ;

val MyOpaqueStack01 = MyOpaqueStack.push 1 MyOpaqueStack0 ;

val MyOpaqueStack0’ = MyOpaqueStack.pop MyOpaqueStack01 ;

MyOpaqueStack.top MyOpaqueStack0’ ;

val MyEmptyOpaqueStack = - : ’a MyOpaqueStack.reptype

val MyOpaqueStack0 = - : int MyOpaqueStack.reptype

val MyOpaqueStack01 = - : int MyOpaqueStack.reptype

val MyOpaqueStack0’ = - : int MyOpaqueStack.reptype

val it = 0 : int

210

2. abstypes

structure MyHiddenStack: STACK =

struct

exception E ;

abstype ’a reptype = S of ’a list (* <-- HIDDEN *)

with (* REPRESENTATION *)

val new = S [] ;

fun push x (S s) = S(x::s) ;

fun pop(S []) = raise E

| pop(S(_::t)) = S(t) ;

fun top(S []) = raise E

| top(S(h::_)) = h ;

end ;

end ;

211

val MyHiddenEmptyStack = MyHiddenStack.new ;

val MyHiddenStack0 = MyHiddenStack.push 0 MyHiddenEmptyStack ;

val MyHiddenStack01 = MyHiddenStack.push 1 MyHiddenStack0 ;

val MyHiddenStack0’ = MyHiddenStack.pop MyHiddenStack01 ;

MyHiddenStack.top MyHiddenStack0’ ;

val MyHiddenEmptyStack = - : ’a MyHiddenStack.reptype

val MyHiddenStack0 = - : int MyHiddenStack.reptype

val MyHiddenStack01 = - : int MyHiddenStack.reptype

val MyHiddenStack0’ = - : int MyHiddenStack.reptype

val it = 0 : int

212

SML Modules
Functors

� An SML functor is a structure that takes other

structures as parameters.

� Functors let us write program units that can be

combined in different ways. Functors can also

express generic algorithms.

213

Functors

Modules also supports parameterised structures, called

functors.

Example: The functor AddFun below takes any

implementation, N, of naturals and re-exports it

with an addition operation.

functor AddFun(N:NAT) =

struct

structure Nat = N

fun add n m = Nat.iter n (Nat.succ) m

end

214

� A functor is a function mapping a formal argument

structure to a concrete result structure.

� The body of a functor may assume no more

information about its formal argument than is

specified in its signature.

In particular, opaque types are treated as distinct type

parameters.

Each actual argument can supply its own, independent

implementation of opaque types.

215

Functor application

A functor may be used to create a structure by applying it to

an actual argument:

structure IntNatAdd = AddFun(IntNat)

structure AbsNatAdd = AddFun(AbsNat)

The actual argument must match the signature of the formal

parameter—so it can provide more components, of more

general types.

Above, AddFun is applied twice, but to arguments that differ in

their implementation of type nat (AbsNat.nat 6= IntNat.nat).

216

Example: Generic imperative stacks.

signature STACK =

sig

type itemtype

val push: itemtype -> unit

val pop: unit -> unit

val top: unit -> itemtype

end ;

217

exception E ;

functor Stack(T: sig type atype end) : STACK =

struct

type itemtype = T.atype

val stack = ref([]: itemtype list)

fun push x

= (stack := x :: !stack)

fun pop()

= case !stack of [] => raise E

| _::s => (stack := s)

fun top()

= case !stack of [] => raise E

| t::_ => t

end ;

218

structure intStack

= Stack(struct type atype = int end) ;

structure intStack : STACK

intStack.push(0) ;

intStack.top() ;

intStack.pop() ;

intStack.push(4) ;

val it = () : unit

val it = 0 : intStack.itemtype

val it = () : unit

val it = () : unit

219

map (intStack.push) [3,2,1] ;

map (fn _ => let val top = intStack.top()

in intStack.pop(); top end)

[(),(),(),()] ;

val it = [(),(),()] : unit list

val it = [1,2,3,4] : intStack.itemtype list

220

Why functors ?

Functors support:

Code reuse.

AddFun may be applied many times to different

structures, reusing its body.

Code abstraction.

AddFun can be compiled before any

argument is implemented.

Type abstraction.

AddFun can be applied to different types N.nat.

221

