Complexity Theory Lecture 4

Anuj Dawar

University of Cambridge Computer Laboratory Easter Term 2014

http://www.cl.cam.ac.uk/teaching/1314/Complexity/

Satisfiability

For Boolean expressions ϕ that contain variables, we can ask

Is there an assignment of truth values to the variables which would make the formula evaluate to **true**?

The set of Boolean expressions for which this is true is the language SAT of *satisfiable* expressions.

This can be decided by a deterministic Turing machine in time $O(n^2 2^n)$.

An expression of length n can contain at most n variables.

For each of the 2^n possible truth assignments to these variables, we check whether it results in a Boolean expression that evaluates to **true**.

Is $SAT \in P$?

Consider the decision problem (or *language*) Composite defined by:

 $\{x \mid x \text{ is not prime}\}$

This is the complement of the language Prime.

Is Composite $\in P$?

Clearly, the answer is yes if, and only if, $\mathsf{Prime} \in \mathsf{P}$.

Hamiltonian Graphs

Given a graph G = (V, E), a *Hamiltonian cycle* in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle *exactly once*.

A graph is called *Hamiltonian* if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is $HAM \in P$?

Examples

The first of these graphs is not Hamiltonian, but the second one is.

Polynomial Verification

The problems **Composite**, **SAT** and **HAM** have something in common.

In each case, there is a *search space* of possible solutions.

the numbers less than x; a truth assignment to the variables of ϕ ; a list of the vertices of G.

The size of the search is *exponential* in the length of the input.

Given a potential solution in the search space, it is *easy* to check whether or not it is a solution.

A verifier V for a language L is an algorithm such that

 $L = \{x \mid (x, c) \text{ is accepted by } V \text{ for some } c\}$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a *nondeterministic Turing machine*.

 $\delta \subseteq (Q \times \Sigma) \times (Q \cup \{\text{acc}, \text{rej}\} \times \Sigma \times \{R, L, S\}).$

The yields relation \rightarrow_M is also no longer functional.

We still define the language accepted by M by:

 $\{x \mid (s, \triangleright, x) \to^{\star}_{M} (acc, w, u) \text{ for some } w \text{ and } u\}$

though, for some x, there may be computations leading to accepting as well as rejecting states.

Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.

Nondeterministic Complexity Classes

We have already defined $\mathsf{TIME}(f)$ and $\mathsf{SPACE}(f)$.

 $\mathsf{NTIME}(f)$ is defined as the class of those languages L which are accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most f(n), where n is the length of x.

$$\mathsf{NP} = \bigcup_{k=1}^\infty \mathsf{NTIME}(n^k)$$

Nondeterminism

For a language in $\mathsf{NTIME}(f)$, the height of the tree can be bounded by f(n) when the input is of length n.

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time p(n).

The following describes a *nondeterministic algorithm* that accepts L

- 1. input x of length n
- 2. nondeterministically guess c of length $\leq p(n)$
- 3. run V on (x, c)

NP

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k .

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x.

At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Generate and Test

We can think of nondeterministic algorithms in the generate-and test paradigm:

Where the *generate* component is nondeterministic and the *verify* component is deterministic.

Reductions

Given two languages $L_1 \subseteq \Sigma_1^{\star}$, and $L_2 \subseteq \Sigma_2^{\star}$,

A *reduction* of L_1 to L_2 is a *computable* function

 $f: \Sigma_1^\star \to \Sigma_2^\star$

such that for every string $x \in \Sigma_1^{\star}$,

 $f(x) \in L_2$ if, and only if, $x \in L_1$

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is *polynomial time reducible* to L_2 .

$L_1 \leq_P L_2$

If f is also computable in $SPACE(\log n)$, we write

 $L_1 \leq_L L_2$

Reductions 2

If $L_1 \leq_P L_2$ we understand that L_1 is no more difficult to solve than L_2 , at least as far as polynomial time computation is concerned.

That is to say,

If $L_1 \leq_P L_2$ and $L_2 \in \mathsf{P}$, then $L_1 \in \mathsf{P}$

We can get an algorithm to decide L_1 by first computing f, and then using the polynomial time algorithm for L_2 .

Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language $A \in NP$, $A \leq_P L$.

A language L is NP-complete if it is in NP and it is NP-hard.