
Turing machines
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Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

! finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

! deterministic (next step uniquely determined if there is
one)

! procedure may not terminate on some input data, but
we can recognize when it does terminate and what the
result is.
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Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as bit
strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of symbols
and increment/decrement/zero-test programmed in terms
of more elementary symbol-manipulating operations.
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Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·
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Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

machine is in one of
a finite set of states

tape symbol
being scanned by
tape head

special left endmarker symbol
special blank symbol

linear tape, unbounded to right, divided into cells
containing a symbol from a finite alphabet of
tape symbols. Only finitely many cells contain
non-blank symbols.

L6 62



Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

! Machine starts with tape head pointing to the special left
endmarker ◃.
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Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

! Machine starts with tape head pointing to the special left
endmarker ◃.

! Machine computes in discrete steps, each of which depends only
on current state (q) and symbol being scanned by tape head (0).

! Action at each step is to overwrite the current tape cell with a
symbol, move left or right one cell, or stay stationary, and change
state.
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Turing Machines

are specified by:

! Q, finite set of machine states

! Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols ◃ (left endmarker) and ␣ (blank)

! s ∈ Q, an initial state

! δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}, a
transition function—specifies for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move
(L=left, R=right, S=stationary).
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Turing Machines

are specified by:

! Q, finite set of machine states

! Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols ◃ (left endmarker) and ␣ (blank)

! s ∈ Q, an initial state

! δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}, a
transition function, satisfying:

for all q ∈ Q, there exists q′ ∈ Q∪ {acc, rej}
with δ(q, ◃) = (q′, ◃, R)
(i.e. left endmarker is never overwritten and machine always

moves to the right when scanning it)
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Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)
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Turing machine computation

Turing machine configuration: (q, w, u)

where

! q ∈ Q∪ {acc, rej} = current state

! w = non-empty string (w = va) of tape symbols under and to
the left of tape head, whose last element (a) is contents of cell
under tape head

! u = (possibly empty) string of tape symbols to the right of tape
head (up to some point beyond which all symbols are ␣)

(So wu ∈ Σ∗ represents the current tape contents.)
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Turing machine computation

Turing machine configuration: (q, w, u)

where

! q ∈ Q∪ {acc, rej} = current state

! w = non-empty string (w = va) of tape symbols under and to
the left of tape head, whose last element (a) is contents of cell
under tape head

! u = (possibly empty) string of tape symbols to the right of tape
head (up to some point beyond which all symbols are ␣)

Initial configurations: (s,◃, u)
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Turing machine computation

Given a TM M = (Q, Σ, s, δ), we write

(q, w, u)→M (q′, w′, u′)

to mean q ̸= acc, rej, w = va (for some v, a) and

either δ(q, a) = (q′, a′, L), w′ = v, and u′ = a′u

or δ(q, a) = (q′, a′, S), w′ = va′ and u′ = u

or δ(q, a) = (q′, a′, R), u = a′′u′′ is non-empty,
w′ = va′a′′ and u′ = u′′

or δ(q, a) = (q′, a′, R), u = ε is empty, w′ = va′␣ and
u′ = ε.
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Turing machine computation

A computation of a TM M is a (finite or infinite) sequence
of configurations c0, c1, c2, . . .

where

! c0 = (s,◃, u) is an initial configuration
! ci →M ci+1 holds for each i = 0, 1, . . ..

The computation

! does not halt if the sequence is infinite
! halts if the sequence is finite and its last element is of

the form (acc, w, u) or (rej, w, u).
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Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ◃, ␣1n0) halts in configuration (acc, ◃␣, 1n+10).
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Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
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q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ◃, ␣1n0) halts in configuration (acc, ◃␣, 1n+10).

a string of n 1s
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The computation of M starting from configuration
(s , ◃ , ␣1n0):

(s , ◃ , ␣1n0) →M (s , ◃␣ , 1n0)
→M (q , ◃␣1 , 1n−10)

...
→M (q , ◃␣1n , 0)
→M (q , ◃␣1n0 , ε)
→M (q , ◃␣1n+1␣ , ε)
→M (q′ , ◃␣1n+1 , 0)

...
→M (q′ , ◃␣ , 1n+10)
→M (acc , ◃␣ , 1n+10)

L6 67



Theorem. The computation of a Turing machine M can
be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M’s states, tape
symbols, tape contents and configurations.

Step 2: implement M’s transition function (finite table)
using RM instructions on codes.

Step 3: implement a RM program to repeatedly carry
out→M.
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Step 1

! Identify states and tape symbols with particular
numbers:

acc = 0 ␣ = 0
rej = 1 ◃ = 1

Q = {2, 3, . . . , n} Σ = {0, 1, . . . , m}

! Code configurations c = (q, w, u) by:

"c# = "[q, "[an , . . . , a1]#, "[b1, . . . , bm]#]#

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.
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Step 1

! Code configurations c = (q, w, u) by:

"c# = "[q, "[an , . . . , a1]#, "[b1, . . . , bm]#]#

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.

reversal of w makes it easier to use
our RM programs for list
manipulation
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Step 2

Using registers

Q = current state

A = current tape symbol

D = current direction of tape head
(with L = 0, R = 1 and S = 2, say)

one can turn the finite table of (argument,result)-pairs
specifying δ into a RM program→ (Q, A, D) ::= δ(Q, A)→ so
that starting the program with Q = q, A = a, D = d (and
all other registers zeroed), it halts with Q = q′, A = a′,
D = d′, where (q′, a′, d′) = δ(q, a).
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Step 3

The next slide specifies a RM to carry out M’s
computation. It uses registers

C = code of current configuration

W = code of tape symbols at and left of tape head (reading
right-to-left)

U = code of tape symbols right of tape head (reading
left-to-right)

Starting with C containing the code of an initial
configuration (and all other registers zeroed), the RM
program halts if and only if M halts; and in that case C

holds the code of the final configuration.
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START HALT

![Q,W,U]"::=C Q<2?

yes

no pop W

to A
(Q,A,D)::=δ(Q,A)

C::=![Q,W,U]"

push A

to U
D−

push B

to W

pop U

to B
D− push A

to W
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