
Turing machines

L6 59



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

! finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

! deterministic (next step uniquely determined if there is
one)

! procedure may not terminate on some input data, but
we can recognize when it does terminate and what the
result is.

L6 60



Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as bit
strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of symbols
and increment/decrement/zero-test programmed in terms
of more elementary symbol-manipulating operations.

L6 61



Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as bit
strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of symbols
and increment/decrement/zero-test programmed in terms
of more elementary symbol-manipulating operations.

L6 61



Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

L6 62



Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

machine is in one of
a finite set of states

tape symbol
being scanned by
tape head

special left endmarker symbol
special blank symbol

linear tape, unbounded to right, divided into cells
containing a symbol from a finite alphabet of
tape symbols. Only finitely many cells contain
non-blank symbols.

L6 62



Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

! Machine starts with tape head pointing to the special left
endmarker ◃.

L6 62



Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

! Machine starts with tape head pointing to the special left
endmarker ◃.

! Machine computes in discrete steps, each of which depends only
on current state (q) and symbol being scanned by tape head (0).

L6 62



Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

! Machine starts with tape head pointing to the special left
endmarker ◃.

! Machine computes in discrete steps, each of which depends only
on current state (q) and symbol being scanned by tape head (0).

! Action at each step is to overwrite the current tape cell with a
symbol, move left or right one cell, or stay stationary, and change
state.

L6 62



Turing Machines

are specified by:

! Q, finite set of machine states

! Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols ◃ (left endmarker) and ␣ (blank)

! s ∈ Q, an initial state

! δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}, a
transition function—specifies for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move
(L=left, R=right, S=stationary).

L6 63



Turing Machines

are specified by:

! Q, finite set of machine states

! Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols ◃ (left endmarker) and ␣ (blank)

! s ∈ Q, an initial state

! δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}, a
transition function, satisfying:

for all q ∈ Q, there exists q′ ∈ Q∪ {acc, rej}
with δ(q, ◃) = (q′, ◃, R)
(i.e. left endmarker is never overwritten and machine always

moves to the right when scanning it)

L6 63



Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

L6 64



Turing machine computation

Turing machine configuration: (q, w, u)

where

! q ∈ Q∪ {acc, rej} = current state

! w = non-empty string (w = va) of tape symbols under and to
the left of tape head, whose last element (a) is contents of cell
under tape head

! u = (possibly empty) string of tape symbols to the right of tape
head (up to some point beyond which all symbols are ␣)

(So wu ∈ Σ∗ represents the current tape contents.)

L6 65



Turing machine computation

Turing machine configuration: (q, w, u)

where

! q ∈ Q∪ {acc, rej} = current state

! w = non-empty string (w = va) of tape symbols under and to
the left of tape head, whose last element (a) is contents of cell
under tape head

! u = (possibly empty) string of tape symbols to the right of tape
head (up to some point beyond which all symbols are ␣)

Initial configurations: (s,◃, u)

L6 65



Turing machine computation

Given a TM M = (Q, Σ, s, δ), we write

(q, w, u)→M (q′, w′, u′)

to mean q ̸= acc, rej, w = va (for some v, a) and

either δ(q, a) = (q′, a′, L), w′ = v, and u′ = a′u

or δ(q, a) = (q′, a′, S), w′ = va′ and u′ = u

or δ(q, a) = (q′, a′, R), u = a′′u′′ is non-empty,
w′ = va′a′′ and u′ = u′′

or δ(q, a) = (q′, a′, R), u = ε is empty, w′ = va′␣ and
u′ = ε.

L6 65













Turing machine computation

A computation of a TM M is a (finite or infinite) sequence
of configurations c0, c1, c2, . . .

where

! c0 = (s,◃, u) is an initial configuration
! ci →M ci+1 holds for each i = 0, 1, . . ..

The computation

! does not halt if the sequence is infinite
! halts if the sequence is finite and its last element is of

the form (acc, w, u) or (rej, w, u).

L6 65



Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ◃, ␣1n0) halts in configuration (acc, ◃␣, 1n+10).

L6 66



Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ◃, ␣1n0) halts in configuration (acc, ◃␣, 1n+10).

a string of n 1s

L6 66



The computation of M starting from configuration
(s , ◃ , ␣1n0):

(s , ◃ , ␣1n0) →M (s , ◃␣ , 1n0)
→M (q , ◃␣1 , 1n−10)

...
→M (q , ◃␣1n , 0)
→M (q , ◃␣1n0 , ε)
→M (q , ◃␣1n+1␣ , ε)
→M (q′ , ◃␣1n+1 , 0)

...
→M (q′ , ◃␣ , 1n+10)
→M (acc , ◃␣ , 1n+10)

L6 67



Theorem. The computation of a Turing machine M can
be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M’s states, tape
symbols, tape contents and configurations.

Step 2: implement M’s transition function (finite table)
using RM instructions on codes.

Step 3: implement a RM program to repeatedly carry
out→M.

L6 68



Step 1

! Identify states and tape symbols with particular
numbers:

acc = 0 ␣ = 0
rej = 1 ◃ = 1

Q = {2, 3, . . . , n} Σ = {0, 1, . . . , m}

! Code configurations c = (q, w, u) by:

"c# = "[q, "[an , . . . , a1]#, "[b1, . . . , bm]#]#

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.
L6 69



Step 1

! Code configurations c = (q, w, u) by:

"c# = "[q, "[an , . . . , a1]#, "[b1, . . . , bm]#]#

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.

reversal of w makes it easier to use
our RM programs for list
manipulation

L6 69



Step 2

Using registers

Q = current state

A = current tape symbol

D = current direction of tape head
(with L = 0, R = 1 and S = 2, say)

one can turn the finite table of (argument,result)-pairs
specifying δ into a RM program→ (Q, A, D) ::= δ(Q, A)→ so
that starting the program with Q = q, A = a, D = d (and
all other registers zeroed), it halts with Q = q′, A = a′,
D = d′, where (q′, a′, d′) = δ(q, a).

L6 70



Step 3

The next slide specifies a RM to carry out M’s
computation. It uses registers

C = code of current configuration

W = code of tape symbols at and left of tape head (reading
right-to-left)

U = code of tape symbols right of tape head (reading
left-to-right)

Starting with C containing the code of an initial
configuration (and all other registers zeroed), the RM
program halts if and only if M halts; and in that case C

holds the code of the final configuration.
L6 71



START HALT

![Q,W,U]"::=C Q<2?

yes

no pop W

to A
(Q,A,D)::=δ(Q,A)

C::=![Q,W,U]"

push A

to U
D−

push B

to W

pop U

to B
D− push A

to W

L6 72


