The halting problem



Definition. A register machine H decides the Halting
Problem if for all e, a4,...,a, € IN, starting H with

R():O Ri=e Rzz'_[al,...,an]_‘

and all other registers zeroed, the computation of H always
halts with Ry containing 0 or 1; moreover when the
computation halts, Rg = 1 if and only if

the register machine program with index e eventually halts
when started with Ry = 0,R{ = a1,...,R; = a, and all
other registers zeroed.
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Definition. A register machine H decides the Halting
Problem if for all e, a4,...,a, € IN, starting H with

R():O Ri=e Rzz'_[al,...,an]_‘

and all other registers zeroed, the computation of H always
halts with Ry containing 0 or 1; moreover when the
computation halts, Rg = 1 if and only if

the register machine program with index e eventually halts
when started with Ry = 0,R{ = a1,...,R; = a, and all
other registers zeroed.

Theorem. No such register machine H can exist. )
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Proof of the theorem

Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

» Let H' be obtained from H by replacing START— by

START—|Z ::= Ry ||/ 71—
0 Ro

(where Z is a register not mentioned in H's program).

» Let C be obtained from H’ by replacing each HALT (&

each erroneous halt) by ——R; "Ry

b

HALT
» Let ¢ € IN be the index of C's program.
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Proof of the theorem

Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with Ry = ¢ eventually halts
if & only if
H’ started with Ry = ¢ halts with Rg = 0
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Proof of the theorem

Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with Ry = ¢ eventually halts

if & only if

H’ started with Ry = ¢ halts with Rg = 0
if & only if

H started with Ry = ¢,R, = "[c] " halts with Ry = 0

if & only if

prog(c) started with Ry = ¢ does not halt
if & only if

C started with Ry = ¢ does not halt
—contradiction!
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Computable functions
Recall:
Definition. f € IN"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Ry, Ry, ..., R, (and maybe more)
such that for all (xy,...,x,) € N" and all y € N,

the computation of M starting with Ry = 0,
R1 = x1, ..., Ry = x,, and all other registers set
to 0, halts with Ry =y

if and only if f(x1,...,%,) = v.

Note that the same RM M could be used to compute a unary function
(n = 1), or a binary function (n = 2), etc. From now on we will
concentrate on the unary case. ..
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Enumerating computable functions

For each e € N, let ¢, € IN—IN be the unary partial
function computed by the RM with program prog(e). So
for all x,y € IN:

@.(x) = y holds iff the computation of prog(e) started
with Rg = 0,R7; = x and all other registers zeroed
eventually halts with Ry = .

Thus
e — @,

defines an onto function from IN to the collection of all
computable partial functions from IN to IN.
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Enumerating computable functions

For each e € N, let ¢, € IN—IN be the unary partial
function computed by the RM with program prog(e). So
for all x,y € IN:

@.(x) = y holds iff the computation of prog(e) started
with Rg = 0,R; = x and all other registers zeroed
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An uncomputable function
Let f € IN—IN be the partial function with graph

{(x,0) [ @(x)T}.

Thus f(x) - undeﬁned if q’x(x)\l'
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An uncomputable function
Let f € IN—IN be the partial function with graph

{(x,0) [ @(x)T}.

Thus f(x) - undeﬁned if q)x(x)\l/

v

f is not computable, because if it were, then f = ¢, for some e € N
and hence

» if .(e)T, then f(e) = 0 (by def. of f); so @.(e) = 0 (since
f = @), hence @.(e)
» if p.(e)d, then f(e)l (since f = @.); so @.(e)T (by def. of f)

—contradiction! So f cannot be computable.
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(Un)decidable sets of numbers
Given a subset S C IN, its characteristic function

1 fxeSs
IN-IN is given by: =
Xs € N-N is given by: xs(x) {0 fxds.
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(Un)decidable sets of numbers

Definition. S C N is called (register machine) decidable if
its characteristic function xs € IN—IN is a register machine
computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all x € IN,
M started with Rg = 0,R1 = x and all other registers zeroed eventually
halts with Rg containing 1 or 0; and Rg = 1 on halting iff x € S.
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(Un)decidable sets of numbers

Definition. S C N is called (register machine) decidable if
its characteristic function xs € IN—IN is a register machine
computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all x € IN,
M started with Rg = 0,R1 = x and all other registers zeroed eventually
halts with Rg containing 1 or 0; and Rg = 1 on halting iff x € S.

Basic strategy: to prove S C IN undecidable, try to show that
decidability of S would imply decidability of the Halting Problem.

For example. ..
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Claim: Sy = {e | ¢.(0)]} is undecidable.
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Claim: Sy = {e | ¢.(0)]} is undecidable. |

Proof (sketch): Suppose My is a RM computing xs,. From Mjp's
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e =Ry and "[a1,...,a,] ' =Ry in

Ry u:=0;
run My

Then by assumption on My, H decides the Halting
Problem—contradiction. So no such My exists, i.e. xs, is
uncomputable, i.e. Sg is undecidable.
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Claim: S; = {e | ¢, a total function} is undecidable.

)
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Claim: S; = {e | ¢, a total function} is undecidable. |

Proof (sketch): Suppose My is a RM computing xs,. From Mj's
program we can construct a RM M) to carry out:

let e =Ry in Ry ::="Ry :=0;prog(e);
run My

Then by assumption on M7, My decides membership of Sg from
previous example (i.e. computes x,)—contradiction. So no such M
exists, i.e. xs, is uncomputable, i.e. S1 is undecidable.
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