A-Definable functions

Definition. f € IN"~IN is A-definable if there is a closed
A-term F that represents it: for all (xq,...,x,) € N" and
y €N

> if f(x1,...,%,) =y, then Fxy - - ‘X =p Y

> i}f f(x1,...,%4)T, then Fxq -+ x, has no B-nf.

This condition can make it quite tricky to find a A-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are A-definable.
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique

h € N"T1IN satisfying

h(d,0) = f(a)
h(d,a+1) = g(d,a,h(d, a))
or equivalently

h(d,a) = if a = 0 then f(d)
else g(d,a —1,h(d,a —1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique
h € N"t1SIN satisfying |h = @, (h)

where ®¢, € (N"T'-IN) - (IN"t1-IN) is given by

@ (h)(d,a) =if a=0 then f(d)
else g(d,a—1,h(d,a —1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique

h € N"t1SIN satisfying |h = @, (h)
where ®¢, € (N"T'-IN) - (IN"T1-IN) is given by. ..
Strategy:

» show that @, is A-definable;,

» show that we can solve fixed point equations
up to B-conversion in the A-calculus.
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Ruscell set .
R=E (o] a(xex)) R = Xx.nék(onx)

Rmecells Youndox

RER & 1 (ReER) RR =, nst (REe)
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Curry’s fixed point combinator Y
Y 2 Af. (Ax. f(xx)) (Ax. f(xx))

J

satisfies YM  —  (Ax.M(xx))(Ax. M(xx))
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Curry’s fixed point combinator Y
Y 2 Af. (Ax. f(xx)) (Ax. f(xx)) ]

satisfies YM — (Ax.M(xx))(Ax.M(xx))
— M((Ax.M(xx))(Ax.M(xx)))

hence YM — M((Ax. M(xx))(Ax.M(xx))) « M(Y M).

So for all A-terms M we have

YM =5 M(Y M)
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique

h € N"t1SIN satisfying |h = @, (h)
where ®¢, € (N"T'-IN) - (IN"t1-IN) is given by

@ (h)(d,a) =if a=0 then f(d)
else g(d,a—1,h(d,a —1))

We now know that h can be represented by

Y (AzXx. If (Eqyx) (FX)(GX (Predx)(zX (Predx)))).
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Representing primitive recursion

Recall that the class PRIM of primitive recursive functions
is the smallest collection of (total) functions containing the
basic functions and closed under the operations of
composition and primitive recursion.

Combining the results about A-definability so far, we have:
every f € PRIM is A-definable.

So for A-definability of all recursive functions, we just have
to consider how to represent minimization. Recall. ..
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Minimization
Given a partial function f € IN"+t1_.N, define
p'f € N"~IN by
1w f(¥) = least x such that f(¥,x) = 0 and
foreachi =0,...,x — 1, f(¥,1)
is defined and > 0
(undefined if there is no such x)

Can express u" f in terms of a fixed point equation:

' f(X) = g(¥,0) where g satisfies| g = ¥;(g)
with ¥, € (N"+1_IN))— (N"*+1_IN)) defined by

Y/(g) (¥, x) =if f(¥,x) =0 then x else g(¥,x+ 1)
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Representing minimization

Suppose f € IN"T1-IN (totally defined function) satisfies
Vd3a (f(d,a) = 0), so that u"f € IN"=IN is totally
defined.

Thus for all @ € IN", u"f(d) = g(d,0) with g = ¥,(g)
and Y¢(g)(d, a) given by

if (f(d,a) =0) then a else g(d,a—+1).

So if f is represented by a A-term F, then p" f is
represented by

AXY(AzXx. If(Eqy(FXx)) x (zX (Succx))) ¥0
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Recursive implies A-definable

Fact: every partial recursive f € IN"~IN can be expressed
in a standard form as f = go (u"h) for some

g, h € PRIM. (Follows from the proof that computable =
partial-recursive.)

Hence every (total) recursive function is A-definable.

More generally, every partial recursive function is
A-definable, but matching up 1 with AB—nf makes the

representations more complicated than for total functions:
see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]
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Computable = A-definable

Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that computable = partial recursive = A-definable.
So it just remains to see that A-definable functions are RM
computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

» write a RM interpreter for (normal order) B-reduction.

The details are straightforward, if tedious.
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Computable = A-definable

Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that computable = partial recursive = A-definable.
So it just remains to see that A-definable functions are RM
computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

Q write a RM interpreter for (normal order) B-reduction.

The details are straightforward, if tedious.
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