λ-Definable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is λ-definable if there is a closed λ-term F that represents it: for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and $y \in \mathbb{N}$

- if $f\left(x_{1}, \ldots, x_{n}\right)=y$, then $F \underline{x_{1}} \cdots \underline{x_{n}}={ }_{\beta} \underline{y}$
- if $f\left(x_{1}, \ldots, x_{n}\right) \uparrow$, then $F \underline{x_{1}} \cdots \underline{x_{n}}$ has no β-nf.

This condition can make it quite tricky to find a λ-term representing a non-total function.

For now, we concentrate on total functions. First, let us see why the elements of PRIM (primitive recursive functions) are $\boldsymbol{\lambda}$-definable.

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show $\boldsymbol{\lambda}$-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$
\begin{cases}h(\vec{a}, 0) & =f(\vec{a}) \\ h(\vec{a}, a+1) & =g(\vec{a}, a, h(\vec{a}, a))\end{cases}
$$

or equivalently

$$
\begin{aligned}
h(\vec{a}, a)= & \text { if } a=0 \text { then } f(\vec{a}) \\
& \text { else } g(\vec{a}, a-1, h(\vec{a}, a-1))
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$ where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by

$$
\begin{aligned}
\Phi_{f, g}(h)(\vec{a}, a) \triangleq & \text { if } a=0 \text { then } f(\vec{a}) \\
& \text { else } g(\vec{a}, a-1, h(\vec{a}, a-1))
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$ where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by...

Strategy:

- show that $\boldsymbol{\Phi}_{f, g}$ is λ-definable;
- show that we can solve fixed point equations $\boldsymbol{X}=\boldsymbol{M X}$ up to β-conversion in the λ-calculus.

Origins of Y

Naive set theory	λ calculus
Russell set :	
$R \triangleq\{x \mid \neg(x \in x)\}$	$R \triangleq \lambda x \cdot \operatorname{not}(x x)$
	$n o t \triangleq \lambda b$. If b False True

Origins of Y

Naive set theory	λ calculus
Russell set :	$R \triangleq \lambda x \cdot \operatorname{not}(x x)$
$R \triangleq\{x \mid \neg(x \in x)\}$	
Russell's Paradox:	$R R={ }_{\beta} \operatorname{not}(R R)$

Origins of Y

Naive set theory	λ calculus
Russell set :	$R \triangleq \lambda x \cdot \operatorname{not}(x x)$
$R \triangleq\{x \mid \neg(x \in x)\}$	
Russell's Paradox:	$R R=\beta \operatorname{not}(R R)$
$R \in R \Leftrightarrow \neg(R \in R)$	

Origins of Y

Naive set theory	λ calculus
Russell set :	$R \triangleq \lambda x \cdot \operatorname{not}(x x)$
$R \triangleq\{x \mid \neg(x \in x)\}$	
Russell's Paradox: $R \in R \Leftrightarrow \neg(R \in R)$	$R R={ }_{\beta} \operatorname{not}(R R)$

$$
\begin{aligned}
& Y \text { not }=R R=(\lambda x \cdot \operatorname{not}(x x))(\lambda x \cdot \operatorname{not}(x x)) \\
& Y f=(\lambda x \cdot f(x x))(\lambda x \cdot f(x x)) \\
& Y=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
\end{aligned}
$$

Curry's fixed point combinator \mathbf{Y}

$$
\mathbf{Y} \triangleq \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

satisfies $\mathbf{Y} M \rightarrow(\lambda \underline{x} \cdot M(x x))(\underline{\lambda x} \cdot M(x x))$

Curry's fixed point combinator \mathbf{Y}
 $$
\mathbf{Y} \triangleq \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

satisfies $\mathbf{Y} M \rightarrow(\lambda x \cdot M(x x))(\lambda x \cdot M(x x))$

$$
\rightarrow M((\lambda x \cdot M(x x))(\lambda x \cdot M(x x)))
$$

hence $\mathbf{Y} M \rightarrow M((\lambda x \cdot M(x x))(\lambda x . M(x x))) \leftarrow M(\mathrm{Y} M)$.
So for all $\boldsymbol{\lambda}$-terms \boldsymbol{M} we have

$$
\mathrm{Y} M={ }_{\beta} M(\mathbf{Y} M)
$$

Turing's fixed point combinator

$$
\begin{aligned}
& \Theta \triangleq A A \\
& \text { where } A \triangleq \lambda x y \cdot y(x x y)
\end{aligned}
$$

Turing's fixed point combinator

$$
\begin{gathered}
\begin{array}{c}
\Theta \triangleq A A \\
\text { where } A \triangleq \lambda x y \cdot y(x x y) \\
\Theta M=A A M=(\lambda x y \cdot y(x x y)) A M
\end{array} \\
\end{gathered}
$$

Turing's fixed point combinator

$$
\begin{aligned}
& \Theta \triangleq A A \\
& \text { where } A \triangleq \lambda x y \cdot y(x x y)
\end{aligned}
$$

$$
\begin{aligned}
\Theta M=A A M & =(\lambda x y \cdot y(x x y)) A M \\
& \rightarrow M(A A M) \\
& =M(\Theta M)
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$
where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by

$$
\begin{aligned}
\Phi_{f, g}(h)(\vec{a}, a) \triangleq & \text { if } a=0 \text { then } f(\vec{a}) \\
& \text { else } g(\vec{a}, a-1, h(\vec{a}, a-1))
\end{aligned}
$$

We now know that h can be represented by
$Y\left(\lambda z \vec{x} x\right.$. If $\left.\left(\mathrm{Eq}_{0} x\right)(F \vec{x})(G \vec{x}(\operatorname{Pred} x)(z \vec{x}(\operatorname{Pred} x)))\right)$.

Example
Factorial function fact $\in \mathbb{N} \rightarrow \mathbb{N}$ satisfies fact $(n)=$ if $n=0$ then 1 else $n \cdot(f$ fact $(n-1))$

Example
Factorial function fact $\in \mathbb{N} \rightarrow \mathbb{N}$ satisfies fact $(n)=$ if $n=0$ then 1 else $n .(f$ fact $(n-1))$ and is λ-definable - it's represented by

$$
\text { Fact } \triangleq Y\left(\lambda f x . \operatorname{If}\left(E q_{0} x\right) \underline{1}(\text { Mult } x(f(\text { Pred } x)))\right)
$$

(Where Cult $\triangleq \lambda x_{1} x_{2} f x . x_{1}\left(x_{2} f\right) x$ represents multiplication).

Representing primitive recursion

Recall that the class PRIM of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about λ-definability so far, we have: every $f \in$ PRIM is λ-definable.

So for $\boldsymbol{\lambda}$-definability of all recursive functions, we just have to consider how to represent minimization. Recall. . .

Minimization

Given a partial function $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$, define $\mu^{n} f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ by
$\mu^{n} f(\vec{x}) \triangleq$ least x such that $f(\vec{x}, x)=0$ and for each $i=0, \ldots, x-1, f(\vec{x}, i)$ is defined and >0 (undefined if there is no such x)

Can express $\mu^{n} f$ in terms of a fixed point equation: $\mu^{n} f(\vec{x}) \equiv g(\vec{x}, 0)$ where g satisfies $g=\Psi_{f}(g)$ with $\Psi_{f} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ defined by

$$
\Psi_{f}(g)(\vec{x}, x) \equiv \text { if } f(\vec{x}, x)=0 \text { then } x \text { else } g(\vec{x}, x+1)
$$

Representing minimization

Suppose $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ (totally defined function) satisfies $\forall \vec{a} \exists a(f(\vec{a}, a)=0)$, so that $\mu^{n} f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is totally defined.

Thus for all $\vec{a} \in \mathbb{N}^{n}, \mu^{n} f(\vec{a})=g(\vec{a}, 0)$ with $g=\Psi_{f}(g)$ and $\Psi_{f}(g)(\vec{a}, a)$ given by if $(f(\vec{a}, a)=0)$ then a else $g(\vec{a}, a+1)$.
So if f is represented by a λ-term F, then $\mu^{n} f$ is represented by

$$
\lambda \vec{x} \cdot \mathrm{Y}\left(\lambda z \vec{x} x \cdot \operatorname{If}\left(\mathrm{Eq}_{0}(F \vec{x} x)\right) x(z \vec{x}(\operatorname{Succ} x))\right) \vec{x} \underline{0}
$$

Recursive implies λ-definable

Fact: every partial recursive $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ can be expressed in a standard form as $f=g \circ\left(\mu^{n} h\right)$ for some $g, h \in$ PRIM. (Follows from the proof that computable $=$ partial-recursive.)
Hence every (total) recursive function is λ-definable.
More generally, every partial recursive function is
λ-definable, but matching up \uparrow with $\nexists \beta-\mathrm{nf}$ makes the representations more complicated than for total functions: see [Hindley, J.R. \& Seldin, J.P. (CUP, 2008), chapter 4.]

Computable $=\lambda$-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that computable $=$ partial recursive $\Rightarrow \lambda$-definable. So it just remains to see that λ-definable functions are RM computable. To show this one can

- code $\boldsymbol{\lambda}$-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) $\boldsymbol{\beta}$-reduction.

The details are straightforward, if tedious.

Numerical coding of λ-terms
Fix an emulation $x_{0}, x_{1}, x_{2}, \ldots$ of the set of variables. For each λ-term M, define $\left.{ }^{\top} M\right\urcorner \in \mathbb{N}$ by

$$
\begin{aligned}
& { }^{\Gamma} x_{i}{ }^{2}={ }^{「}[0, i]^{\top} \\
& { }^{r} \lambda x_{i} \cdot M^{2}={ }^{r}\left[1, i,{ }^{r} M^{7}\right]^{7} \\
& { }^{r} M N^{2}={ }^{r}\left[2,{ }^{r} M^{\top},{ }^{r} N^{\top}\right]^{\top}
\end{aligned}
$$

(where ${ }^{r}\left[n_{0}, n_{1}, \ldots, n_{k}\right]{ }^{]}$is the numerical coding of lists of numbers from $P 43$).

Computable $=\lambda$-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that computable $=$ partial recursive $\Rightarrow \lambda$-definable. So it just remains to see that λ-definable functions are RM computable. To show this one can

- code $\boldsymbol{\lambda}$-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.

Summary

- Formalization of intuitive notion of Algormin in several equivalent way cf. "Chureh-Turing Thesis"I
- Limitative results: $\left\{\begin{array}{l}\text { undecidable problems } \\ \text { uncomputable functions }\end{array}\right.$ "programs as data" + diagonalization

