Lambda-Definable Functions

Encoding data in $\boldsymbol{\lambda}$-calculus

Computation in λ-calculus is given by β-reduction. To relate this to register/Turing-machine computation, or to partial recursive functions, we first have to see how to encode numbers, pairs, lists, \ldots as $\boldsymbol{\lambda}$-terms.

We will use the original encoding of numbers due to Church. . .

Church's numerals

$$
\begin{aligned}
\underline{\mathbf{0}} & \triangleq \lambda f x \cdot x \\
\underline{\mathbf{1}} & \triangleq \lambda f x \cdot f x \\
\underline{2} & \triangleq \lambda f x \cdot f(f x) \\
& \vdots \\
\underline{n} & \triangleq \lambda f x \cdot \underbrace{f(\cdots(f}_{n \text { times }} x) \cdots)
\end{aligned}
$$

Notation: $\begin{cases}M^{0} N & \triangleq N \\ M^{1} N & \triangleq M N \\ M^{n+1} N & \triangleq M\left(M^{n} N\right)\end{cases}$
so we can write \underline{n} as $\lambda f x . f^{n} x$ and we have $\underline{n} M N={ }_{\beta} M^{n} N$.

Church's numerals

$$
\left.\begin{array}{rl}
\underline{\mathbf{0}} & \triangleq \lambda f x \cdot x \\
\underline{\mathbf{1}} & \triangleq \lambda f x \cdot f x \\
\underline{\mathbf{2}} & \triangleq \lambda f x \cdot f(f x) \\
& \vdots \\
\underline{n} & \triangleq \lambda f x \cdot \underbrace{f(\cdots(f}_{n \text { times }} x) \cdots)
\end{array} \quad \begin{array}{l}
\text { NB. not } f f x, \\
\text { Which stands for } \\
\text { (ff }) x
\end{array}\right]
$$

$$
\text { Notation: } \begin{cases}M^{0} N & \triangleq N \\ M^{1} N & \triangleq M N \\ M^{n+1} N & \triangleq M\left(M^{n} N\right)\end{cases}
$$

so we can write \underline{n} as $\lambda f x . f^{n} x$ and we have $\underline{n} M N={ }_{\beta} M^{n} N$.

λ-Definable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is λ-definable if there is a closed λ-term F that represents it: for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and $y \in \mathbb{N}$

- if $f\left(x_{1}, \ldots, x_{n}\right)=y$, then $F \underline{x_{1}} \cdots \underline{x_{n}}={ }_{\beta} \underline{y}$
- if $f\left(x_{1}, \ldots, x_{n}\right) \uparrow$, then $F \underline{x_{1}} \cdots \underline{x_{n}}$ has no β-nf.

For example, addition is λ-definable because it is represented by $P \triangleq \lambda x_{1} x_{2} . \lambda f x . x_{1} f\left(x_{2} f x\right)$:

$$
\begin{aligned}
P \underline{m} \underline{n} & ={ }_{\beta} \lambda f x \cdot \underline{m} f(\underline{n} f x) \\
& ={ }_{\beta} \lambda f x \cdot \underline{m} f\left(f^{n} x\right) \\
& ={ }_{\beta} \lambda f x \cdot f^{m}\left(f^{n} x\right) \\
& =\lambda f x \cdot f^{m+n} x \\
& =\underline{m+n}
\end{aligned}
$$

Computable $=\boldsymbol{\lambda}$-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that
Register Machine computable
$=$ Turing computable
$=$ partial recursive.
Using this, we break the theorem into two parts:

- every partial recursive function is $\boldsymbol{\lambda}$-definable
- λ-definable functions are RM computable

λ-Definable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is λ-definable if there is a closed λ-term F that represents it: for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and $y \in \mathbb{N}$

- if $f\left(x_{1}, \ldots, x_{n}\right)=y$, then $F \underline{x_{1}} \cdots \underline{x_{n}}={ }_{\beta} \underline{y}$
- if $f\left(x_{1}, \ldots, x_{n}\right) \uparrow$, then $F \underline{x_{1}} \cdots \underline{x_{n}}$ has no β-nf.

This condition can make it quite tricky to find a λ-term representing a non-total function.

For now, we concentrate on total functions. First, let us see why the elements of PRIM (primitive recursive functions) are $\boldsymbol{\lambda}$-definable.

Basic functions

- Projection functions, $\operatorname{proj}_{i}^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$:

$$
\operatorname{proj}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq x_{i}
$$

- Constant functions with value $\mathbf{0}$, zero ${ }^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$:

$$
\operatorname{zero}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq \mathbf{0}
$$

- Successor function, succ $\in \mathbb{N} \rightarrow \mathbb{N}$:

$$
\operatorname{succ}(x) \triangleq x+1
$$

Basic functions are representable

- $\operatorname{proj}_{i}^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by $\lambda x_{1} \ldots x_{n} . x_{i}$
- zero $^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by $\lambda x_{1} \ldots x_{n} \cdot \underline{0}$
- $\operatorname{succ} \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by

$$
\text { Succ } \triangleq \lambda x_{1} f x . f\left(x_{1} f x\right)
$$

since

$$
\text { Succ } \begin{aligned}
\underline{n} & ={ }_{\beta} \lambda f x \cdot f(\underline{n} f x) \\
& ={ }_{\beta} \lambda f x \cdot f\left(f^{n} x\right) \\
& =\lambda f x \cdot f^{n+1} x \\
& =\underline{n+1}
\end{aligned}
$$

Basic functions are representable

- $\operatorname{proj}_{i}^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by $\lambda x_{1} \ldots x_{n} . x_{i}$
- zero $^{n} \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by $\lambda x_{1} \ldots x_{n} . \underline{0}$
- succ $\in \mathbb{N} \rightarrow \mathbb{N}$ is represented by

$$
\text { Succ } \triangleq \lambda x_{1} f x . f\left(x_{1} f x\right)
$$

since

$$
\text { Succ } \begin{aligned}
\underline{n} & ={ }_{\beta} \lambda f x \cdot f(\underline{n} f x) \\
& ={ }_{\beta} \lambda f x \cdot f\left(f^{n} x\right) \\
& =\lambda f x \cdot f^{n+1} x \\
& =\underline{n+1}
\end{aligned}
$$

$\left(\lambda x_{1} f x \cdot x_{1} f(f x)\right.$ also represents succ)

Representing composition

If total function $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by F and total functions $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ are represented by G_{1}, \ldots, G_{n}, then their composition $f \circ\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ is represented simply by

$$
\lambda x_{1} \ldots x_{m} . F\left(G_{1} x_{1} \ldots x_{m}\right) \ldots\left(G_{n} x_{1} \ldots x_{m}\right)
$$

because

$$
\begin{aligned}
& F\left(G_{1} \underline{a_{1}} \ldots \underline{a_{m}}\right) \ldots\left(G_{n}, \ldots, a_{1} \ldots, a_{m}\right) \\
&={ }_{\beta} F \underline{g_{1}\left(a_{1}, \ldots, a_{m}\right)} \ldots g_{n}\left(\underline{a_{1}}, \ldots, a_{m}\right) \\
&= \underline{f\left(g_{1}\left(a_{1}, \ldots, a_{m}\right), \ldots, g_{n}\left(a_{1}, \ldots, a_{m}\right)\right)} \\
&=\underline{f \circ\left(g_{1}, \ldots, g_{n}\right)\left(a_{1}, \ldots, a_{m}\right)}
\end{aligned}
$$

Representing composition

If total function $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by F and total functions $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ are represented by G_{1}, \ldots, G_{n}, then their composition $f \circ\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{N}^{m} \rightarrow \mathbb{N}$ is represented simply by

$$
\lambda x_{1} \ldots x_{m} . F\left(G_{1} x_{1} \ldots x_{m}\right) \ldots\left(G_{n} x_{1} \ldots x_{m}\right)
$$

This does not necessarily work for partial functions. E.g. totally undefined function $u \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $U \triangleq \lambda x_{1} \Omega$ (why?) and zero ${ }^{1} \in \mathbb{N} \rightarrow \mathbb{N}$ is represented by $Z \triangleq \lambda x_{1} \cdot \underline{0}$; but zero ${ }^{1} \circ u$ is not represented by $\lambda x_{1} . \mathrm{Z}\left(U x_{1}\right)$, because $\left(\right.$ zero $\left.{ }^{1} \circ \hat{u}\right)(n) \uparrow$ whereas $\left(\lambda x_{1} . Z\left(U x_{1}\right)\right) \underline{n}={ }_{\beta} Z \Omega={ }_{\beta} \underline{0}$. (What is zero ${ }^{1} \circ u$ represented by?)

Primitive recursion

Theorem. Given $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightharpoonup \mathbb{N}$, there is a unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$
\begin{cases}h(\vec{x}, 0) & \equiv f(\vec{x}) \\ h(\vec{x}, x+1) & \equiv g(\vec{x}, x, h(\vec{x}, x))\end{cases}
$$

for all $\vec{x} \in \mathbb{N}^{n}$ and $x \in \mathbb{N}$.
We write $\rho^{n}(f, g)$ for h and call it the partial function defined by primitive recursion from f and g.

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show $\boldsymbol{\lambda}$-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$
\begin{cases}h(\vec{a}, 0) & =f(\vec{a}) \\ h(\vec{a}, a+1) & =g(\vec{a}, a, h(\vec{a}, a))\end{cases}
$$

or equivalently

$$
\begin{aligned}
h(\vec{a}, a)= & \text { if } a=0 \text { then } f(\vec{a}) \\
& \text { else } g(\vec{a}, a-1, h(\vec{a}, a-1))
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$ where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by

$$
\begin{aligned}
\Phi_{f, g}(h)(\vec{a}, a) \triangleq & \text { if } a=0 \text { then } f(\vec{a}) \\
& \text { else } g(\vec{a}, a-1, h(\vec{a}, a-1))
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$ where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by. ..

Strategy:

- show that $\boldsymbol{\Phi}_{f, g}$ is λ-definable;
- show that we can solve fixed point equations $X=M X$ up to β-conversion in the λ-calculus.

Representing booleans

$$
\begin{aligned}
\text { True } & \triangleq \lambda x y \cdot x \\
\text { False } & \triangleq \lambda x y \cdot y \\
\text { If } & \triangleq \lambda f x y \cdot f x y
\end{aligned}
$$

satisfy

- If True $M N={ }_{\beta}$ True $M N={ }_{\beta} M$
- If False $M N={ }_{\beta}$ False $M N={ }_{\beta} N$

Representing test-for-zero

$\mathrm{Eq}_{0} \triangleq \lambda x . x(\lambda y$. False $)$ True

satisfies

- $\mathbf{E q}_{0} \underline{\mathbf{0}}={ }_{\beta} \underline{0}(\lambda y$. False $)$ True

$$
={ }_{\beta} \text { True }
$$

- $\mathbf{E q}_{0} \underline{n+1}={ }_{\beta} \underline{n+1}(\lambda y$. False) True
$=\beta \overline{(\lambda y \text {. False })^{n+1} \text { True }}$
$=\beta \quad(\lambda y$. False $)\left((\lambda y \text {. False })^{n}\right.$ True $)$
$={ }_{\beta}$ False

Representing ordered pairs

Pair $\triangleq \lambda x y f . f x y$
Fit $\triangleq \lambda f . f$ True
Sid $\triangleq \lambda f . f$ False
satisfy

- $\operatorname{Fst}(\operatorname{Pair} M N)={ }_{\beta} \operatorname{Fst}(\lambda f . f M N)$
$=\beta \quad(\lambda f . f M N)$ True
$={ }_{\beta}$ True $M N$
$=\beta \quad M$
- $\operatorname{Snd}(\operatorname{Pair} M N)={ }_{\beta} \cdots={ }_{\beta} N$

Representing predecessor

Want λ-term Pred satisfying

$$
\begin{array}{ll}
\text { Pred } \underline{n+1} & =\beta_{\beta} \underline{n} \\
\text { Pred } \underline{0} & ={ }_{\beta} \underline{0}
\end{array}
$$

Have to show how to reduce the " $n+1$-iterator" $\underline{n+1}$ to the "n-iterator" \underline{n}.

Idea: given f, iterating the function $g_{f}:(x, y) \mapsto(f(x), x) n+1$ times starting from (x, x) gives the pair $\left(f^{n+1}(x), f^{n}(x)\right)$. So we can get $f^{n}(x)$ from $f^{n+1}(x)$ parametrically in f and x, by building g_{f} from f, iterating $n+1$ times from (x, x) and then taking the second component.

Hence. . .

Representing predecessor

Want λ-term Pred satisfying

$$
\begin{array}{ll}
\text { Pred } \underline{n+1} & =\beta_{\beta} \underline{n} \\
\text { Pred } \underline{0} & =\beta_{\beta} \underline{0}
\end{array}
$$

$$
\begin{aligned}
& \text { Pred } \triangleq \lambda y f x . \operatorname{Snd}(y(G f)(\operatorname{Pair} x x)) \\
& \text { where } \\
& G \triangleq \lambda f p \cdot \operatorname{Pair}(f(\text { Fst } p))(\text { Fst } p)
\end{aligned}
$$

has the required β-reduction properties. [Exercise]

Show

$$
(\forall n \in \mathbb{N}) \underline{n+1}(G f)(\operatorname{Pair} x x)=\beta \operatorname{Pair}(\underline{n+1} f x)(\underline{n} f x)
$$

by induction on $n \in \mathbb{N}$:
Base case $n=0$:

$$
\begin{aligned}
\underline{1}(\operatorname{Gif})(\operatorname{Pair} x x) & =\beta \operatorname{Gf}(\operatorname{Pair} x x) \\
& =\beta \operatorname{Pair}(f x) x \\
& =\rho \operatorname{Pair}(1 f x)(0 f x)
\end{aligned}
$$

Show

$$
(\forall n \in \mathbb{N}) \underline{n+1}(G f)(\operatorname{Pair} x x)=\beta \operatorname{Pair}(\underline{n+1} f x)(\underline{n} f x)
$$

by induction on $n \in \mathbb{N}$:
Induction step:

$$
\underline{n+2}(G f)(\operatorname{Pair} x x)=\beta(G f) \underline{n+1}(G f)(\operatorname{Pair} x x)
$$

by ind. hyp.

$$
S_{\beta}^{\text {by ind.nyp. }}(G f) \operatorname{Pair}\left(\underline{n+1} f_{x}\right)\left(\underline{n} f_{x}\right)
$$

Show

$$
(\forall n \in \mathbb{N}) \underline{n+1}(G f)(\operatorname{Pair} x x)=\beta \operatorname{Pair}(\underline{n+1} f x)(\underline{n} f x)
$$

by induction on $n \in \mathbb{N}$:
Induction step:

$$
\begin{aligned}
& \underline{n+2}(G f)(\operatorname{Pair} x x)={ }_{\beta}(G f) \underline{n+1}(G f)(\operatorname{Pair} x x) \\
&\left(\begin{array}{l}
\text { by ind.hyp. }
\end{array}\right. \\
&={ }_{\beta}(G f) \operatorname{Pair}\left(\underline{n+1} f_{x}\right)(\underline{n} f x) \\
&=\beta \operatorname{Pair}\left(f\left(\underline{n+1} f_{x}\right)\right)\left(\stackrel{n+1}{ } f_{x}\right) \\
&=\beta \operatorname{Pair}(\underline{n+2} f x)(\underline{n+1} f x) \quad /
\end{aligned}
$$

Show

$$
\begin{gathered}
(\forall n \in \mathbb{N}) \underline{n+1}(G f)(\operatorname{Pair} x x)=\beta \operatorname{Pair}(\underline{n+1} f x)(\underline{n f x}) \\
\text { So Pred n+1 }={ }_{\beta} \lambda f x . \text { Snd }(\underline{n+1}(G f)(\operatorname{Pair} x x)) \\
={ }_{\beta} \lambda f x . \text { Snd }(\operatorname{Pair}(n+1 f x)(n f x))
\end{gathered}
$$

$$
\begin{aligned}
\text { Pred } \underline{n+1} & =\beta \lambda f x \cdot \operatorname{Snd}(\underline{n+1}(G f)(\text { Pair } x x)) \\
& =\beta \lambda f x \cdot \operatorname{Snd}\left(\text { Pair }\left(\underline{n+1} f_{x}\right)(n f x)\right) \\
& =\beta \lambda f_{x} \cdot \underline{n} f_{x} \\
& =\beta \lambda x \cdot f^{n} x \\
& =n
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$ where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by

$$
\begin{aligned}
\Phi_{f, g}(h)(\vec{a}, a) \triangleq & \text { if } a=0 \text { then } f(\vec{a}) \\
& \text { else } g(\vec{a}, a-1, h(\vec{a}, a-1))
\end{aligned}
$$

Representing primitive recursion

If $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h=\boldsymbol{\Phi}_{f, g}(h)$ where $\boldsymbol{\Phi}_{f, g} \in\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right) \rightarrow\left(\mathbb{N}^{n+1} \rightarrow \mathbb{N}\right)$ is given by. .

Strategy:

show that $\Phi_{f, g}$ is λ-definable;

$$
\lambda z \vec{x} x \cdot \operatorname{If}\left(E q_{0} x\right)(F \vec{x})(G \vec{x}(\operatorname{Pred} x)(z \vec{x}(\operatorname{Pred} x)))
$$

