λ-Terms, \boldsymbol{M}

are built up from a given, countable collection of

- variables x, y, z, \ldots
by two operations for forming $\boldsymbol{\lambda}$-terms:
- λ-abstraction: $(\lambda x . M)$
(where \boldsymbol{x} is a variable and \boldsymbol{M} is a λ-term)
- application: ($\boldsymbol{M} \boldsymbol{M}^{\prime}$)
(where \boldsymbol{M} and \boldsymbol{M}^{\prime} are λ-terms).
Some random examples of λ-terms:

$$
x \quad(\lambda x \cdot x) \quad((\lambda y \cdot(x y)) x) \quad(\lambda y \cdot((\lambda y \cdot(x y)) x))
$$

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

is the binary relation inductively generated by the rules:

$$
\begin{gathered}
\overline{x={ }_{\alpha} x} \quad \frac{z \#(M N) \quad M\{z / x\}={ }_{\alpha} N\{z / y\}}{\lambda x \cdot M={ }_{\alpha} \lambda y \cdot N} \\
\frac{M={ }_{\alpha} M^{\prime} \quad N={ }_{\alpha} N^{\prime}}{M N={ }_{\alpha} M^{\prime} N^{\prime}}
\end{gathered}
$$

where $M\{z / x\}$ is M with all occurrences of x replaced by z.

Substitution $N[M / x]$

$$
\begin{aligned}
x[M / x] & =M \\
y[M / x] & =y \quad \text { if } y \neq x \\
(\lambda y \cdot N)[M / x] & =\lambda y \cdot N[M / x] \quad \text { if } y \#(M x) \\
\left(N_{1} N_{2}\right)[M / x] & =N_{1}[M / x] N_{2}[M / x]
\end{aligned}
$$

$N[M / x]=$ result of replacing all free occurrences of x in N with M, avoiding "Capture" of free variables in M by λ-binders in N

Substitution $N[M / x]$

$$
\begin{aligned}
x[M / x] & =M \\
y[M / x] & =y \quad \text { if } y \neq x \\
(\lambda y \cdot N)[M / x] & =\lambda y \cdot N[M / x] \quad \text { if } y \#(M x) \\
\left(N_{1} N_{2}\right)[M / x] & =N_{1}[M / x] N_{2}[M / x]
\end{aligned}
$$

Side-condition y \# $(M x)$ (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".
E.g. if $x \neq y$

$$
(\lambda y . x)[y / x] \neq \lambda y . y
$$

Substitution $N[M / x]$

$$
\begin{aligned}
x[M / x] & =M \\
y[M / x] & =y \quad \text { if } y \neq x \\
(\lambda y \cdot N)[M / x] & =\lambda y \cdot N[M / x] \quad \text { if } y \#(M x) \\
\left(N_{1} N_{2}\right)[M / x] & =N_{1}[M / x] N_{2}[M / x]
\end{aligned}
$$

Side-condition y \# ($M x$) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".
E.g. if $x \neq y \neq z \neq x$

$$
(\lambda y . x)[y / x]={ }_{\alpha}(\lambda z . x)[y / x]=\lambda z . y
$$

In fact $N \mapsto N[M / x]$ induces a totally defined function from the set of $\boldsymbol{\alpha}$-equivalence classes of $\boldsymbol{\lambda}$-terms to itself.

$$
=\lambda x \cdot(\lambda y \cdot y) y x[\lambda z \cdot y / y]
$$

$$
=\begin{array}{ll}
& \lambda x,(\lambda y \cdot y) y x[\lambda z \cdot y / y] \quad \begin{array}{l}
\text { no possible } \\
\text { capture }
\end{array} \\
=
\end{array}
$$

$$
\begin{aligned}
& \lambda x \cdot(\lambda y \cdot y) y x[\lambda z \cdot y / y] \\
= & \lambda x \cdot(\lambda y \cdot y)(\lambda z \cdot y) x \\
= & \lambda x \cdot(\lambda y \cdot y) x y[\lambda y \cdot x / y]
\end{aligned}
$$

$$
\begin{aligned}
& \lambda x \cdot(\lambda y \cdot y) y x[\lambda x \cdot y / y] \\
= & \lambda x \cdot(\lambda y \cdot y)(\lambda x \cdot y) x \\
& \lambda x \cdot(\lambda y \cdot y) x y[\lambda y \cdot x / y] \begin{array}{c}
\text { possible } \\
\text { capture }
\end{array} \\
= &
\end{aligned}
$$

$$
\begin{aligned}
& \lambda x \cdot(\lambda y \cdot y) y x[\lambda x \cdot y / y] \\
= & \lambda x \cdot(\lambda y \cdot y)(\lambda x \cdot y) x \\
& \lambda x \cdot(\lambda y \cdot y) x y[\lambda y \cdot x / y]] \begin{array}{c}
\text { possible } \\
\text { capture... }
\end{array} \\
= & \lambda z \cdot(\lambda y-y) z y[\lambda y \cdot x / y] \begin{array}{c}
\text {...convert } \\
\text { to avoid }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda x \cdot(\lambda y \cdot y) y x[\lambda x \cdot y / y] \\
= & \lambda x \cdot(\lambda y \cdot y)(\lambda x \cdot y) x \\
& \lambda x \cdot(\lambda y \cdot y) x y[\lambda y \cdot x / y] \quad \begin{array}{c}
\text { possible } \\
\text { capture... }
\end{array} \\
= & \lambda z \cdot(\lambda y \cdot y) z y[\lambda y \cdot x / y] \begin{array}{c}
\text {.. -convert } \\
\text { to avoid }
\end{array} \\
= & \lambda z \cdot(\lambda y \cdot y) z(\lambda y \cdot x)
\end{aligned}
$$

β-Reduction

Recall that $\lambda x . M$ is intended to represent the function f such that $f(x)=M$ for all x. We can regard $\lambda x . M$ as a function on λ-terms via substitution: map each N to $M[N / x]$.
So the natural notion of computation for $\boldsymbol{\lambda}$-terms is given by stepping from a
β-redex $\quad(\lambda x . M) N$
to the corresponding
β-reduct $\quad M[N / x]$

β-Reduction

One-step β-reduction, $\boldsymbol{M} \rightarrow M^{\prime}$:

$$
\begin{array}{cc}
\frac{M \rightarrow M^{\prime}}{(\lambda x . M) N \rightarrow M[N / x]} & \frac{M x . M \rightarrow \lambda x \cdot M^{\prime}}{\lambda \lambda} \\
\begin{array}{c}
\frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N}
\end{array} \frac{M \rightarrow M^{\prime}}{N M \rightarrow N M^{\prime}} \\
\frac{N={ }_{\alpha} M \quad M \rightarrow M^{\prime}}{N \rightarrow N^{\prime}} & M^{\prime}={ }_{\alpha} N^{\prime}
\end{array}
$$

β-Reduction

E.g.
$(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow(\lambda x . x y)(\lambda z . z) \longrightarrow(\lambda z . z) y \longrightarrow y$

β-Reduction

E.g.
$(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow(\lambda x . x y)(\lambda z . z) \longrightarrow(\lambda z . z) y \longrightarrow y$

β-Reduction

E.g.
$(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow(\lambda y . \lambda z . z) u) y \longrightarrow(\lambda z . z) y \longrightarrow y$

β-Reduction

E.g.
$(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow(\lambda x . x y)(\lambda z . z) \longrightarrow(\lambda z . z) y \longrightarrow y$

β-Reduction

E.g.
$(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow\left(\lambda x .{ }^{(\lambda y . x y)(\lambda z . z) u) y}(\lambda z . z) y \longrightarrow y\right.$

β-Reduction

E.g.
$(\lambda x . x y)((\lambda y . \lambda z . z) u) \longrightarrow((\lambda y . \lambda z . z) u) y \longrightarrow(\lambda z . z) y \longrightarrow y$
E.g. of "up to α-equivalence" aspect of reduction:
$(\lambda x . \lambda y \cdot x) y={ }_{\alpha}(\lambda x . \lambda z . x) y \rightarrow \lambda z . y$

Many-step β-reduction, $\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$:

$$
\begin{array}{ccc}
\frac{\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}}{\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}} & \frac{\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}}{\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}} & \boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime} \quad \boldsymbol{M}^{\prime} \rightarrow \boldsymbol{M}^{\prime \prime} \\
\boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime \prime} \\
\text { (1 step) } & & \\
\text { (1 more step) }
\end{array}
$$

E.g.
$(\lambda x . x y)((\lambda y z . z) u) \rightarrow y$
$(\lambda x . \lambda y . x) y \rightarrow \lambda z . y$

β-Conversion $\boldsymbol{M}=\beta_{\beta} N$

Informally: $M={ }_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α-equivalence, β-reduction, or β-expansion (= inverse of a reduction).

$$
\text { E.g. } u((\lambda x y . v x) y)={ }_{\beta}(\lambda x . u x)(\lambda x . v y)
$$

$$
\text { because }(\lambda x . u x)(\lambda x . v y) \rightarrow u(\lambda x . v y)
$$

and so we have

$$
\begin{array}{rlrl}
u((\lambda x y . v x) y) & =_{\alpha} u\left(\left(\lambda x y^{\prime} \cdot v x\right) y\right) & & \\
& \rightarrow u\left(\lambda y^{\prime} . v y\right) & & \text { reduction } \\
& =_{\alpha} u(\lambda x . v y) & & \\
& \leftarrow(\lambda x . u x)(\lambda x . v y) & \text { expansion }
\end{array}
$$

β-Conversion $\boldsymbol{M}={ }_{\beta} N$

is the binary relation inductively generated by the rules:

$$
\begin{gathered}
\frac{M={ }_{\alpha} M^{\prime}}{M={ }_{\beta} M^{\prime}} \quad \frac{M \rightarrow M^{\prime}}{M={ }_{\beta} M^{\prime}} \\
\frac{M={ }_{\beta} M^{\prime}}{M=M_{\beta} M^{\prime \prime}} \begin{array}{c}
M_{\beta} M^{\prime \prime} \\
M_{\beta} M \\
\frac{M={ }_{\beta} M^{\prime}}{M N={ }_{\beta} M^{\prime} N^{\prime}} \\
\frac{M={ }_{\beta} N^{\prime}}{\lambda x \cdot M^{\prime}}
\end{array}
\end{gathered}
$$

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \longleftarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $\boldsymbol{M}_{1} \rightarrow \boldsymbol{M}^{\prime} \longleftarrow M_{2}$.
[Proof omitted.]

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \longleftarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \leftrightarrow M_{2}$.

Corollary. Two show that two terms are β-convertible, it suffices to show that they both reduce to the same term.
More precisely: $M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $\boldsymbol{M}_{1} \nleftarrow M \rightarrow \boldsymbol{M}_{2}$, then there exists M^{\prime} such that $\boldsymbol{M}_{1} \rightarrow \boldsymbol{M}^{\prime} \longleftarrow M_{2}$.

Corollary. $\quad M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.

Proof. $={ }_{\beta}$ satisfies the rules generating \rightarrow; so $\boldsymbol{M} \rightarrow M^{\prime}$ implies $M={ }_{\beta} M^{\prime}$. Thus if $M_{1} \rightarrow M \longleftarrow M_{2}$, then $M_{1}={ }_{\beta} M={ }_{\beta} M_{2}$ and so $M_{1}={ }_{\beta} M_{2}$.
Conversely, the relation $\left\{\left(M_{1}, M_{2}\right) \mid \exists M\left(M_{1} \rightarrow M \nVdash M_{2}\right)\right\}$ satisfies the rules generating $=\beta$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_{1} \longrightarrow M_{\sharp} M_{2} \longrightarrow M^{\prime}{ }_{«}{ }^{\circ} M_{3}$

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \leftarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \leftarrow M_{2}$.

Corollary. $\quad M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.
Proof. $=\beta$ satisfies the rules generating \rightarrow; so $M \rightarrow M^{\prime}$ implies $M={ }_{\beta} M^{\prime}$. Thus if $M_{1} \rightarrow M \longleftarrow M_{2}$, then $M_{1}={ }_{\beta} M={ }_{\beta} M_{2}$ and so $M_{1}={ }_{\beta} M_{2}$.
Conversely, the relation $\left\{\left(M_{1}, M_{2}\right) \mid \exists M\left(M_{1} \rightarrow M \nVdash M_{2}\right)\right\}$ satisfies the rules generating $={ }_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_{1} \longrightarrow M_{\sharp}{ }_{\sharp} M_{2} \longrightarrow M^{\prime}{ }_{\longleftrightarrow} M_{3}$

M_{2}^{\prime}

Church-Rosser Theorem

Theorem. \rightarrow is confluent, that is, if $M_{1} \leftarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \leftarrow M_{2}$.

Corollary. $\quad M_{1}={ }_{\beta} M_{2}$ iff $\exists M\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$.

Proof. $={ }_{\beta}$ satisfies the rules generating \rightarrow; so $\boldsymbol{M} \rightarrow M^{\prime}$ implies $M={ }_{\beta} M^{\prime}$. Thus if $M_{1} \rightarrow M \longleftarrow M_{2}$, then $M_{1}={ }_{\beta} M={ }_{\beta} M_{2}$ and so $M_{1}={ }_{\beta} M_{2}$.
Conversely, the relation $\left\{\left(M_{1}, M_{2}\right) \mid \exists M\left(M_{1} \rightarrow M \nVdash M_{2}\right)\right\}$ satisfies the rules generating $={ }_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_{1}={ }_{\beta} M_{2}$ implies $\exists M\left(M_{1} \rightarrow M^{\prime} \llbracket M_{2}\right)$.

β-Normal Forms

Definition. A λ-term N is in β-normal form (nf) if it contains no β-redexes (no sub-terms of the form $\left.(\lambda x . M) M^{\prime}\right)$. M has β-nf N if $M={ }_{\beta} N$ with N a β-nf.

β-Normal Forms

Definition. A λ-term N is in β-normal form (nf) if it contains no β-redexes (no sub-terms of the form $\left.(\lambda x . M) M^{\prime}\right) . M$ has β-nf N if $M={ }_{\beta} N$ with N a β-nf.

Note that if N is a β-nf and $N \rightarrow N^{\prime}$, then it must be that $N={ }_{\alpha} N^{\prime}$ (why?).

Hence if $N_{1}={ }_{\beta} N_{2}$ with N_{1} and N_{2} both β-nfs, then $N_{1}={ }_{\alpha} N_{2}$. (For if $N_{1}={ }_{\beta} N_{2}$, then by Church-Rosser $N_{1} \rightarrow M^{\prime} \longleftrightarrow N_{2}$ for some M^{\prime}, so $N_{1}={ }_{\alpha} M^{\prime}={ }_{\alpha} N_{2}$.)
So the β-nf of M is unique up to α-equivalence if it exists.

Non-termination

Some λ terms have no β-nf.
E.g. $\Omega \triangleq(\lambda x . x x)(\lambda x . x x)$ satisfies

- $\Omega \rightarrow(x x)[(\lambda x . x x) / x]=\Omega$,
- $\Omega \rightarrow M$ implies $\Omega={ }_{\alpha} M$.

So there is no β-nf N such that $\Omega={ }_{\beta} N$.

Non-termination

Some λ terms have no β-nf.
E.g. $\Omega \triangleq(\lambda x . x x)(\lambda x . x x)$ satisfies

- $\Omega \rightarrow(x x)[(\lambda x . x x) / x]=\Omega$,
- $\Omega \rightarrow M$ implies $\Omega={ }_{\alpha} M$.

So there is no $\beta-\mathrm{nf} N$ such that $\Omega={ }_{\beta} N$.

A term can possess both a β-nf and infinite chains of reduction from it.

$$
\text { E.g. }(\lambda x . y) \Omega \rightarrow y, \text { but also }(\lambda x . y) \Omega \rightarrow(\lambda x . y) \Omega \rightarrow \cdots
$$

Non-termination

Normal-order reduction is a deterministic strategy for reducing $\boldsymbol{\lambda}$-terms: reduce the "left-most, outer-most" redex first.

- left-most: reduce M before N in M, and then
- outer-most: reduce $(\lambda x . M) N$ rather than either of M or N.
(cf. call-by-name evaluation).
Fact: normal-order reduction of \boldsymbol{M} always reaches the β-nf of \boldsymbol{M} if it possesses one.

$$
\begin{aligned}
& \frac{M_{1}=\alpha M_{1}^{\prime} M_{1}^{\prime} \rightarrow_{\text {NOR }} M_{2}^{\prime} \quad M_{2}^{\prime}=M_{2}}{M_{1} \rightarrow \text { lox } M_{2}} \\
& \frac{M \rightarrow_{\text {NOR }} M^{\prime}}{\lambda \lambda . M \rightarrow_{\text {NOR }} \lambda \lambda \cdot M^{\prime}} \\
& \xrightarrow[M_{1} M_{\text {NOR }} M_{1}^{\prime}]{M_{\text {NOR }} M_{1}^{\prime} M_{2}} \frac{}{(\lambda x \cdot M) M^{\prime} \rightarrow_{\text {NOR }} M\left[M^{\prime} / x\right]}
\end{aligned}
$$

