Computer Networking

Lent Term M/W/F 11-midday
LT1 in Gates Building

Slide Set 5
Andrew W. Moore

andrew.moore@cl.cam.ac.uk
February 2014

Topic 5b — Transport

Our goals:

understand principles
behind transport layer

services:

multiplexing/
demultiplexing

reliable data transfer
flow control
congestion control

learn about transport layer
protocols in the Internet:
— UDP: connectionless transport

— TCP: connection-oriented
transport

— TCP congestion control

Automatic Repeat Request (ARQ)

+ Self-clocking (Automatic) Next lets move from
the generic to the

+ Adaptive specific....
+ Flexible TCP arguably the most
successful protocol in the

- Slow to start / adapt
consider high Bandwidth/Delay product

its an ARQ protocol

TCP Header

/

/< Source port Destination port\>
\ |
Used to mux Sequence number

and demux

Acknowledgment

HdrLen| o | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

Last time: Components of a solution
for reliable transport

Checksums (for error detection)
Timers (for loss detection)

Acknowledgments
— cumulative
— selective

Sequence numbers (duplicates, windows)

Sliding Windows (for efficiency)
— Go-Back-N (GBN)
— Selective Replay (SR)

What does TCP do?

Many of our previous ideas, but some key

differences
e Checksum

TCP Header

Source port

Destination port

Sequence number

Acknowledgment

Computed
over header HdrLen

0

Flags

Advertised window

and data \< Checksum

—

> Urgent pointer

e ——

—

Options

(variable)

Data

What does TCP do?

Many of our previous ideas, but some key
differences

 Sequence numbers are byte offsets

TCP: Segments and
Sequence Numbers

TCP “Stream of Bytes” Service...

Application @ Host A

[4 11(5[

% k<
t—F l—P
~uo

AN

08 1A

w|w|w|w o
MIKKKE <
HHHH '—r
O»—‘[\)w o0

S

Application @ Host B

... Provided Using TCP “Segments”

Host A

0 9Ag
1 91Ag
7 9Ag
€ 91Ag

08 3Ad

YVYVY v< Segment Sent When:
TCP Data 1. Segment full (Max Segment Size),
2. Not full, but times out

TCP Data

Host B

0 21Ag |e
T 91Ag |«
7 91Ag |«
€ 21A9 |«

08 91Ag |«

TCP Segment

IP Data

TCP Data (segment) TCP Hdr IP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
— E.g., up to 1500 bytes with Ethernet

* TCP packet

— |P packet with a TCP header and data inside
— TCP header = 20 bytes long

* TCP segment
— No more than Maximum Segment Size (MSS) bytes

— E.g., up to 1460 consecutive bytes from the stream
— MSS = MTU — (IP header) — (TCP header)

Sequence Numbers

ISN (initial sequence number)

k bytes
<—>

A

Host A 2 ‘

Sequence number
= 15t byte in segment =
ISN + k

Sequence Numbers

ISN (initial sequence number)

k
y
Host A ‘
Sequence number . T 1o
= 1% byte in segment = TCP bata HDR
ISN + k ACK sequence number
= next expected byte

= segno + length(data)

TCP
TCP Data DR

Host B

TCP Header

Starting byte Source port Destination port

offset of data — —
carried in this —C L Sequence number _/>
segment Acknowledgment

HdrLen| o | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

15

e What does TCP do?

What does TCP do?

Most of our previous tricks, but a few differences

* Receiver sends cumulative acknowledgements (like GBN)

ACKing and Sequence Numbers

- Sender sends packet
— Data starts with sequence number X
- Packet contains B bytes [X, X+1, X+2,X+B-1]

- Upon receipt of packet, receiver sends an ACK

— If all data prior to X already received:
- ACK acknowledges X+B (because that is next expected byte)

— If highest in-order byte received is Y s.t. (Y+1) < X
- ACK acknowledges Y+1
- Even if this has been ACKed before

Normal Pattern

Sender: seqno=X, length=B
Receiver: ACK=X+B

Sender: seqno=X+B, length=B
Receiver: ACK=X+2B

Sender: segno=X+2B, length=B

Seqgno of next packet is same as last ACK field

TCP Header

Acknowledgment
gives segno just
beyond highest

seqgno received in
order —_

(“What Byte
is Next”)

Source port

Destination port

Sequence number

/

]

I Acknowledgment R

HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

20

What does TCP do?

Most of our previous tricks, but a few differences

* Receivers buffer out-of-sequence packets (like SR)

Loss with cumulative ACKs

e Sender sends packets with 100B and seqgnos.:
— 100, 200, 300, 400, 500, 600, 700, 800, 900, ...

e Assume the fifth packet (seqno 500) is lost,
but no others

e Stream of ACKs will be:
— 200, 300, 400, 500, 500, 500, 500,...

What does TCP do?

Most of our previous tricks, but a few differences

* Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

Loss with cumulative ACKs

* “Duplicate ACKs” are a sign of an isolated loss

— The lack of ACK progress means 500 hasn’t been delivered

— Stream of ACKs means some packets are being delivered

* Therefore, could trigger resend upon receiving k

duplicate ACKs
 TCP uses k=3

* But response to loss is trickier....

Loss with cumulative ACKs

e Two choices:

— Send missing packet and increase W by the
number of dup ACKs

— Send missing packet, and wait for ACK to increase
W

* Which should TCP do?

What does TCP do?

Most of our previous tricks, but a few differences

* Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

Retransmission Timeout

* |f the sender hasn’t received an ACK by
timeout, retransmit the first packet in the

window

* How do we pick a timeout value?

.............................. \1

Timeout too long =2 inefficient

Timing lllustration

\

................................ e
TTimeout

RTT Y. — 1
Voo

Timeout too short 2
duplicate packets

28

Retransmission Timeout

* How to set timeout?
— : connection has low throughput
— : retransmit packet that was just delayed

* Solution: make timeout proportional to RTT
* But how do we measure RTT?

RTT Estimation

* Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime — SendPacketTime
EstimatedRTT = a x EstimatedRTT + (1 - o) x SampleRTT

O<a=<l1

EstimatedRTT

»

| SS~
-
-
-~
-
-
-
-
-
-
-~
-
-
-
-
-
-~

v

Time

Exponential Averaging Example

EstimatedRTT = aa*EstimatedRTT + (1 — a) *SampleRTT
Assume RTT is constant 2 SampleRTT = RTT

EstimatedRTT (o= 0.5)
RTT

EstimatedRTT (o= 0.8)

v

o 1 2 3 4 5 6 7 8 9 time

31

Problem: Ambiguous Measurements

« How do we differentiate between the real ACK, and ACK of
the retransmitted packet?

Sender Receiver Sender Receiver

Or/ OI’/
i i
nal Transm - na/ Transm- '
ISsiop o ISsiop
— =
> £ ACK
oc T
3 RetranSm V) Re smi
i jces
&

Karn/Partridge Algorithm

Measure SampleRTT only for original transmissions

— Once a segment has been retransmitted, do not use it for any
further measurements

Computes EstimatedRTT using a = 0.875

Timeout value (RTO) =2 x EstimatedRTT

Employs exponential backoff
— Every time RTO timer expires, set RTO < 2-RTO
— (Up to maximum = 60 sec)

— Every time new measurement comes in (= successful original
transmission), collapse RTO back to 2 x EstimatedRTT

12

10

ATT (sac)

Karn/Partridge in action

Figure 5: Performance of an RFC793 retransmit timer

—

110

from Jacobson and Karels, SIGCOMM 1988

34

Jacobson/Karels Algorithm

* Problem: need to better capture variability in
RTT

—Directly measure deviation

* Deviation = | SampleRTT — EstimatedRTT |
EstimatedDeviation: exponential average of Deviation

RTO = EstimatedRTT + 4 x EstimatedDeviation

12

10

ATT (sac)

With Jacobson/Karels

Figure 5: Performance of an RFC793 retransmit timer

ATT (sac)

Figure 6: Performance of a Mean+Variance retransmit timer

o~

10

36

What does TCP do?

Most of our previous ideas, but some key
differences

Checksum

Sequence numbers are byte offsets

Receiver sends cumulative acknowledgements (like GBN)
Receivers do not drop out-of-sequence packets (like SR)

Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

37

TCP Header: What’s left?

“Must Be Zero”
6 bits reserved

Number of 4-byte
words in TCP
header:;

5 = no options

Source port Destination port

Sequence number

Acknowledgment

—— | |
]\-IerenSZED Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

38

TCP Header: What’s left?

Source port Destination port

Sequence number

Used with URG
Ack |
flag to indicate cknowledgment

urgent data (not \'H'd-FLEQ 0 | Flags | Advertised window

. \ — e
discussed further) BN
Checksum @rgent pointer/

Options (variable)

g

Data

39

TCP Header: What’s left?

Source port

Destination port

Sequence number

Acknowledgment

HdrLen| o <Flags >Advertised window

Checksum

Urgent pointer

Options (variable)

Data

40

TCP Connection Establishment and
Initial Sequence Numbers

Initial Sequence Number (ISN)

Sequence number for the very first byte

Why not just use ISN = 0?

Practical issue

— |P addresses and port #s uniquely identify a connection

— Eventually, though, these port #s do get used again
— ... small chance an old packet is still in flight

TCP therefore requires changing ISN
Hosts exchange ISNs when they establish a connection

Establishing a TCP Connection

A B
SYN
 SINACE
W}
%}
Dax

/

Each host tells
its ISN to the
other host.

« Three-way handshake to establish connection
— Host A sends a SYN (open; “synchronize sequence numbers”) to

host B

— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port Destination port

Sequence number

Flags: gyN
ACK ——— Acknowledgment
FIN HdrLen| 0] Flags |) Advertised window
RST
PSH Checksum Urgent pointer
URG

Options (variable)

Data

44

Step 1: A’ s Initial SYN Packet

A's port B's port

A's Initial Sequence Number

Fla s:@\ |
J (Irrelevant since ACK not set)

ACK —

FIN 5) 0°(_ Flags |) Advertised window
RST

PSH ‘/Checksum Urgent pointer
URG _Opticris(variable)

A tells B it wants to open a connection...

Step 2: B's SYN-ACK Packet

B’ s port A’ s port
B’ s Initial Sequence Number
Flags: = T
9%:(> C_ ACK=A'sISNpus1 D
— _
FIN 5 [0 Flags) Advertised window
RST S~
PSH Checksum Urgent pointer
URG _Opticiis(vartable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data

Step 3: A’ s ACK of the SYN-ACK

Flags: SEE </
\

FIN

RST
PSH
URG

A’ s port B’ s port

A’ s Initial Sequence Number

—

e ——

’ \
B’s ISN plus 1 l/>
20B | o | Flags | Advertised window
Checksum Urgent pointer
_Opticiis(vartable)

A tells B it’ s likewise okay to start sending

.. upon receiving this packet, B can start sending data

47

Timing Diagram: 3-Way Handshaking

Passive
Open
Active
o Server

Client (initiator)
listen()
conneCt() S

=x+1
SYN + ACK, SegqNum =Y Ack

ACK, Ack S

What if the SYN Packet Gets Lost?

« Suppose the SYN packet gets lost
— Packet is lost inside the network, or:
— Server discards the packet (e.g., it's too busy)

« Eventually, no SYN-ACK arrives

— Sender sets a timer and waits for the SYN-ACK
— ... and retransmits the SYN if needed

 How should the TCP sender set the timer?
— Sender has no idea how far away the receiver is
— Hard to guess a reasonable length of time to wait

— SHOULD (RFCs 1122 & 2988) use default of 3 seconds
« Some implementations instead use 6 seconds

SYN Loss and Web Downloads

» User clicks on a hypertext link
— Browser creates a socket and does a “connect”
— The “connect” triggers the OS to transmit a SYN

 |fthe SYN is lost...

— 3-6 seconds of delay: can be very long
— User may become impatient
— ... and click the hyperlink again, or click “reload”

« User triggers an “abort” of the “connect”
— Browser creates a new socket and another “connect”
— Essentially, forces a faster send of a new SYN packet!
— Sometimes very effective, and the page comes quickly

Tearing Down the Connection

Normal Termination, One Side At A Time

B
YA
ébg”y Z oo\
s %%5/\% g 2 2
‘ﬁ o 0o o
A R — U

time

* Finish (FIN) to close and receive remaining bytes Connection

: : now closed
— FIN occupies one byte in the sequejnce space Conmectio

« QOther host acks the byte to confirm now half-closed

* Closes A's side of the connection, but not B's tive wair:
— Until B likewise sends a FIN Avoid reincarnation
— Which A then acks B will retransmit FIN

if ACKis lost s

Normal Termination, Both Together

B 1}
é @) & > " %
S R74 & g 2
a eo o a
A N

time
TIME_WAIT:
Avoid reincarnation

Can retransmit
FIN ACK if ACK lost

Connection
now closed

« Same as before, but B sets FIN with their ack of A's FIN

53

Abrupt Termination

RST

B
02!}

29 \2 H e
2 z] Q A o =
‘ﬁ o 0o o

A S

time

A sends a RESET (RST) to B

— E.g., because application process on A crashed
That’s it

— B does not ack the RST

— Thus, RST is not delivered reliably

— And: any data in flight is lost
— But: if B sends anything more, will elicit another RST

TCP Header

Source port Destination port
Sequence number
Flags:
g /S-\é':(\\ ﬂnolIGdgment
FIN HdrLen[0" Flags |) Advertised window
RST =
PSH Checksum Urgent pointer
URG Options (variable)

Data

55

TCP State Transitions

CLOSED
A

Active open/SYN

Passive open Close

y
LISTEN

SYN/SYN + ACK Send SYN

1

SYN_RCVD |2 SYN/SYN + ACK SYN_SENT
ACK SYN + ACK/ACK
\ ﬁ Data, ACK
Close/FIN ESTABLISHED | < excha nges
are in here
v Close/FIN FIN/ACK
FIN_WAIT_1 CLOSE_WAIT
<~ FIN/ACK
ACK & \ Close/FIN
y xx}/b \
FIN_WAIT_2 e CLOSING LAST_ACK
(o Tmeoutatter o oy
FIN/ACK ! 9 '
TIME_WAIT ~ CLOSED

An Simpler View of the Client Side

SYN (Send)
i ﬁ

Rcv. FIN,

Send ACK Rev. SYN+ACK,

Send ACK

Rev. ACK, %N
Send Nothing

TCP Header

Used to negotiate
use of additional
features

(details in section)

Source port Destination port

Sequence number

Acknowledgment

‘HQLen 0 | Flags | Advertised window

Mum Urgent pointer

N\

Options (variable)

58

TCP Header

Source port

Destination port

Sequence number

Acknowledgment

D

HdrL Advertised window _
drLen| 0 | Flags vertised window |
Checksum Urgent pointer

Options (variable)

Data

59

* What does TCP do?
— ARQ windowing, set-up, tear-down

 Flow Control in TCP

Recap: Sliding Window (so far)
 Both sender & receiver maintain a window

 Left edge of window:
— Sender: beginning of unacknowledged data
— Recelver: beginning of undelivered data

» Right edge: Left edge + constant

— constant only limited by buffer size in the
transport layer

Sliding Window at Sender (so far)

Sending process
TCP Buffer size
A‘rﬁaﬁ byte written

Previously __
ACKed bytes K |

Py
V'

First unACKed byte

Last byte
can send

Sliding Window at Receiver (so far)

Receiving process

Last byte read

Buffer size (B)

v

> L, (

Received and —__ N
ACKed

Sender might overrun
the receiver’s buffer

Next byte needed
(18t byte not received)

Last byte received

Solution: Advertised Window (Flow
Control)

- Receiver uses an “Advertised Window” (W)
to prevent sender from overflowing its
window

- Receiver indicates value of W in ACKs

— Sender limits number of bytes it can have in
flight <= W

Sliding Window at Receiver

W= B - (LastByteReceived - LastByteRead)

Last byte read Buffer size (B)

(

N
v

V'

Next byte needed
(15t byte not received)

Last byte received

Sliding Window at Sender (so far)

Sending process

TCP

W
<>

L.ast-byte written

V'

First unACKed byte

Last byte
can send

Sliding Window w/ Flow Control

 Sender: window advances when new data
ack’d

* Recelver: window advances as receiving
process consumes data

« Recelver advertises to the sender where

the receiver window currently ends
(“righthand edge™)

— Sender agrees not to exceed this amount

Advertised Window Limits Rate

Sender can send no faster than W/RTT
bytes/sec

Receiver only advertises more space when it
has consumed old arriving data

In original TCP design, that was the sole
protocol mechanism controlling sender’ s rate

What's missing?

TCP

* The concepts underlying TCP are simple
— acknowledgments (feedback)
— timers
— sliding windows
— buffer management
— sequence numbers

TCP

e But tricky in the details
— How do we set timers?
— What is the segno for an ACK-only packet?
— What happens if advertised window = 0?
— What if the advertised window is 2 an MSS?
— Should receiver acknowledge packets right away?
— What if the application generates data in units of 0.1 MSS?

— What happens if | get a duplicate SYN? Or a RST while I’'m in
FIN_WAIT, etc., etc., etc.

TCP

* The concepts underlying TCP are simple
e But tricky in the details
* Do the details matter?

71

Sizing Windows for
Congestion Control

 What are the problems?
* How might we address them?

* What does TCP do?
— ARQ windowing, set-up, tear-down

* Flow Control in TCP
* Congestion Control in TCP

We have seen:

— Flow control: adjusting the sending rate to
keep from overwhelming a slow receiver

Now lets attend...

— Congestion control: adjusting the sending rate
to keep from overloading the network

74

Statistical Multiplexing = Congestion

 If two packets arrive at the same time

— Arouter can only transmit one

— ... and either buffers or drops the other

 If many packets arrive in a short period of time
— The router cannot keep up with the arriving traffic
— ... delays traffic, and the buffer may eventually overflow

 Internet traffic is bursty

—>

75

Congestion is undesirable

Typical queuing system with bursty arrivals

Average Average
Packet delay Packet loss
Load Load

Must balance utilization versus delay and loss

Who Takes Care of Congestion?

e Network? End hosts? Both?

 TCP’s approach:
— End hosts adjust sending rate
— Based on implicit feedback from network

* Not the only approach
— A consequence of history rather than planning

Some History: TCP in the 1980s

Sending rate only limited by flow control

— Packet drops = senders (repeatedly!) retransmit a full
window’s worth of packets

Led to “congestion collapse” starting Oct. 1986

— Throughput on the NSF network dropped from
32Kbits/s to 40bits/sec

“Fixed” by Van Jacobson’s development of TCP’s
congestion control (CC) algorithms

Jacobson’s Approach

 Extend TCP’s existing window-based protocol but adapt the
window size in response to congestion
— required no upgrades to routers or applications!
— patch of a few lines of code to TCP implementations

e A pragmatic and effective solution

— but many other approaches exist

* Extensively improved on since
— topic now sees less activity in ISP contexts
— but is making a comeback in datacenter environments

Three Issues to Consider

* Discovering the available (bottleneck)
bandwidth

e Adjusting to variations in bandwidth

* Sharing bandwidth between flows

Abstract View

A . 1B

Sending Host Buffer in Router Receiving Host

* Ignore internal structure of router and model it as
having a single queue for a particular input-
output pair

Discovering available bandwidth

A R 100 Mbps S B

* Pick sending rate to match bottleneck bandwidth

— Without any a priori knowledge
— Could be gigabit link, could be a modem

Adjusting to variations in bandwidth

BW(t)

e Adjust rate to match instantaneous bandwidth
— Assuming you have rough idea of bandwidth

Multiple flows and sharing bandwidth

Two Issues:
* Adjust total sending rate to match bandwidth
* Allocation of bandwidth between flows

Al /@
A2 S B2

A3 B3

Reality

Congestion control is a resource allocation problem involving many flows,
many links, and complicated global dynamics

85

View from a single flow

Load

, knee cliff — p?cket
* Knee — point after which S| = |
— Throughput increases slowly Eo |
— Delay increases fast 2 i congestion
< | collapse

Delay

e Cliff — point after which

— Throughput starts to drop to zero
(congestion collapse)

— Delay approaches infinity

Load

General Approaches

(0) Send without care
— Many packet drops

General Approaches

(0) Send without care

(1) Reservations
— Pre-arrange bandwidth allocations
— Requires negotiation before sending packets

— Low utilization

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing
— Don’t drop packets for the high-bidders
— Requires payment model

General Approaches

(0) Send without care

—

(

(
(3

N

)
)
)
)

Reservations

Pricing

Dynamic Adjustment

— Hosts probe network; infer level of congestion; adjust
— Network reports congestion level to hosts; hosts adjust
— Combinations of the above

— Simple to implement but suboptimal, messy dynamics

General Approaches

(0) Send without care
(1) Reservations

(2) Pricing

(3) Dynamic Adjustment

All three techniques have their place
* Generality of dynamic adjustment has proven powerful

* Doesn’t presume business model, traffic characteristics,
application requirements; does assume good citizenship

TCP’s Approach in a Nutshell

 TCP connection has window
— Controls number of packets in flight

* Sending rate: “Window/RTT

* Vary window size to control sending rate

92

All These Windows...

 Congestion Window: CWND
— How many bytes can be sent without overflowing routers
— Computed by the sender using congestion control algorithm

* Flow control window: AdvertisedWindow (RWND)

— How many bytes can be sent without overflowing receiver’s buffers
— Determined by the receiver and reported to the sender

* Sender-side window = minimum{CWND,RWND}
« Assume for this lecture that RWND >> CWND

Note

 This lecture will talk about CWND in units of
MSS

— (Recall MSS: Maximum Segment Size, the amount of
payload data in a TCP packet)

— This is only for pedagogical purposes

* Keep in mind that real implementations
maintain CWND in bytes

Two Basic Questions

* How does the sender detect congestion?

* How does the sender adjust its sending rate?

— To address three issues
* Finding available bottleneck bandwidth
* Adjusting to bandwidth variations
e Sharing bandwidth

Detecting Congestion

Packet delays
— Tricky: noisy signal (delay often varies considerably)

Router tell endhosts they're congested

Packet loss

— Fail-safe signal that TCP already has to detect
— Complication: non-congestive loss (checksum errors)

Two indicators of packet loss
— No ACK after certain time interval: timeout
— Multiple duplicate ACKs

Not All Losses the Same

* Duplicate ACKs: isolated loss
— Still getting ACKs

 Timeout: much more serious
— Not enough dupacks
— Must have suffered several losses

* Will adjust rate differently for each case

Rate Adjustment

* Basic structure:
— Upon receipt of ACK (of new data): increase rate
— Upon detection of loss: decrease rate

* How we increase/decrease the rate depends on
the phase of congestion control we're in:

— Discovering available bottleneck bandwidth vs.
— Adjusting to bandwidth variations

Bandwidth Discovery with Slow Start

» Goal: estimate available bandwidth
— start slow (for safety)
— but ramp up quickly (for efficiency)

» Consider
— RTT = 100ms, MSS=1000bytes
— Window size to fill 1Mbps of BW = 12.5 packets
— Window size to fill 1Gbps = 12,500 packets
— Either is possible!

“Slow Start” Phase

 Sender starts at a slow rate but increases
exponentially until first loss

 Start with a small congestion window
— Initially, CWND = 1
— So, initial sending rate is MSS/RTT

 Double the CWND for each RTT with no loss

Slow Start in Action

e Foreach RTT: double CWND

 Simpler implementation: for each ACK, CWND +=1

1 —
Spc = : | 0 &
D A D\D\ A D\D\ D\ D va
A Q‘ :
Dest

101

Adjusting to Varying Bandwidth

* Slow start gave an estimate of available bandwidth

* Now, want to track variations in this available
bandwidth, oscillating around its current value

— Repeated probing (rate increase) and backoff (rate
decrease)

 TCP uses: “Additive Increase Multiplicative
Decrease” (AIMD)

— We'll see why shortly...

AIMD

 Additive increase

— Window grows by one MSS for every RTT with no
loss

— For each successful RTT, CWND = CWND + 1

— Simple implementation:
 for each ACK, CWND = CWND+ 1/CWND

« Multiplicative decrease

— On loss of packet, divide congestion window in half
— On loss, CWND = CWND/2

Leads to the TCP “Sawtooth”

Window
Loss
J\ >
\
Exponential [

“slow start”

Slow-Start vs. AIMD

* When does a sender stop Slow-Start and start
Additive Increase?

* Introduce a “slow start threshold” (ssthresh)

— Initialized to a large value
— On timeout, ssthresh = CWND/2

* When CWND = ssthresh, sender switches from
slow-start to AIMD-style increase

* What does TCP do?
— ARQ windowing, set-up, tear-down

 Flow Control in TCP

* Congestion Control in TCP
— AIMD

Why AIMD?

Recall: Three Issues

* Discovering the available (bottleneck)
bandwidth

— Slow Start

* Adjusting to variations in bandwidth
— AIMD

e Sharing bandwidth between flows

108

Goals for bandwidth sharing

e Efficiency: High utilization of link bandwidth
* Fairness: Each flow gets equal share

Why AIMD?

* Some rate adjustment options: Every RTT, we can

— Multiplicative increase or decrease: CWND—
a*CWND

— Additive increase or decrease: CWND— CWND + Db

* Four alternatives:
— AIAD: gentle increase, gentle decrease
— AIMD: gentle increase, drastic decrease
— MIAD: drastic increase, gentle decrease
— MIMD: drastic increase and decrease

Simple Model of Congestion Control

1} Efficiency Fairness
line // line

Two users
— rates x, and x,

Congestion when
X4+X, > 1

Unused capacity
when x;+x, < 1

User 2’s rate (x,)

Fair when x, =x,

User 1’s rate (x;) 1

111

Example

fairness

1
\ Efficient: x,+x,=1
Fair

User 2: x,

Inefficient: x,+x,=0.7 /

/7
/]

(0.2, 0.5)
A,
/7

/ Not fair

s | Efficient: x,+x,=1

/ line
/
/

Congested: x,+x,=1.2

0.5,0.5)

>\7'

(0.7, 0.3)
i

o

efficiency
line

User 1: x,

fairness
(Xl 'aD+aI) > / line

Increase: x + a,
Decrease: x - aj

Does not

converge to o

fairness o
=

efficiency
line

113

fairness

* Increase: x*b, 7/ line
* Decrease: x*b,
* Does not

convergeto =

fairness g

efficiency
line

114

fairness
/7 line
* Increase: x+a,
* Decrease: x*b
« Convergesto #
. @\
fairness 5
)
~_:. efficiency
:‘/ line
"4

Why is AIMD fair?
(a pretty animation...)

Two competing sessions:
* Additive increase gives slope of 1, as throughout increases
 multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Bandwidth for Connection 2 =

Bandwidth for Connection1 R

116

AIMD Sharing Dynamics

/

B

\>

E

Rates equalize = fair share —

30 AAI.)

o AR

~ 00 1 N O O M O M~ I T 0 10 N O O M O N
N IO 0 ©O M ©W O v« I I~ O N I Kk O M O o©
~ T v v N N N N O 0o 0O T O <

117

AIAD Sharing Dynamics

ASe— —8B
D T

60

50

40 -

30

20

AAAMAMANAAAN
 NWWWWWWWWYWWY

- 00 U AN O ©O©W M O M < ™ 0 L N O ©O M O ©~
N IO 00 O M W O «~« <~ M ON UL N O © ©
~ Y Y v N N N N O O MO - - <~ <

TCP Congestion Control
Detalls

Implementation

e State at sender
— CWND (initialized to a small constant)
— ssthresh (initialized to a large constant)
— [Also dupACKcount and timer, as before]

* Events
— ACK (new data)
— dupACK (duplicate ACK for old data)
— Timeout

120

Event: ACK (new data)

e |[f CWND < ssthresh N

e CWND packets per RTT
—CWND +=1 * Hence after one RTT

with no drops:
CWND = 2xCWND

Event: ACK (new data)

e |[f CWND < ssthresh
— CWND +=1

e Else
— CWND = CWND + 1/CWND

—Slow start phase

“Congestion
Avoidance” phase
— (additive increase)

—

e CWND packets per RTT
 Hence after one RTT

~

with no drops:
CWND = CWND + 1

122

Event: TimeQOut

* On Timeout
— ssthresh < CWND/2
— CWND € 1

123

Event: dupACK

 dupACKcount ++

* If dupACKcount = 3 /* fast retransmit */
— ssthresh = CWND/2
— CWND = CWND/2

Example

Window _
N Fast Timeout SSThresh

Retransmission Set to Here

j
| Slow start in operation until V/\/

it reaches half of previous
CWND, I.e., SSTHRESH

Slow-start restart: Go back to CWND =1 MSS, but take
advantage of knowing the previous value of CWND

125

* What does TCP do?
— ARQ windowing, set-up, tear-down

 Flow Control in TCP

* Congestion Control in TCP
— AIMD, Fast-Recovery

One Final Phase: Fast Recovery

* The problem: congestion avoidance too slow
in recovering from an isolated loss

Example (in units of MSS, not bytes)

e Consider a TCP connection with:
— CWND=10 packets

— Last ACK was for packet # 101
* i.e., receiver expecting next packet to have seq. no. 101

10 packets [101, 102, 103,..., 110] are in flight
— Packet 101 is dropped
— What ACKs do they generate?
— And how does the sender respond?

Timeline

ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
RETRANSMIT 101 ssthresh=5 cwnd=5

ACK 101 (due to 105) cwnd=5 + 1/5 (no xmit)

ACK 101 (due to 106) cwnd=5 + 2/5 (no xmit)

ACK 101 (due to 107) cwnd=5 + 3/5 (no xmit)

ACK 101 (due to 108) cwnd=5 + 4/5 (no xmit)

ACK 101 (due to 109) cwnd=5 + 5/5 (no xmit)

ACK 101 (due to 110) cwnd=6 + 1/5 (no xmit)

ACK 111 (due to 101) € only now can we transmit new packets

Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for
another RTT

129
129

Solution: Fast Recovery

Idea: Grant the sender temporary “credit” for each dupACK so as
to keep packets in flight

* If dupACKcount =3

— ssthresh = cwnd/2
— cwnd = ssthresh + 3

 While in fast recovery
— cwnd = cwnd + 1 for each additional duplicate ACK

* Exit fast recovery after receiving new ACK
— set cwnd = ssthresh

130

Example

* Consider a TCP connection with:
— CWND=10 packets
— Last ACK was for packet # 101

* i.e., receiver expecting next packet to have seq. no. 101

10 packets [101, 102, 103,..., 110] are in flight
— Packet 101 is dropped

Timeline

ACK 101 (due to 102) cwnd=10 dup#l

ACK 101 (due to 103) cwnd=10 dup#?2

ACK 101 (due to 104) cwnd=10 dup#3

REXMIT 101 ssthresh=5 cwnd= 8 (5+3)

ACK 101 (due to 105) cwnd= 9 (no xmit)

ACK 101 (due to 106) cwnd=10 (no xmit)

ACK 101 (due to 107) cwnd=11 (xmit 111)

ACK 101 (due to 108) cwnd=12 (xmit 112)

ACK 101 (due to 109) cwnd=13 (xmit 113)

ACK 101 (due to 110) cwnd=14 (xmit 114)

ACK 111 (due to 101) cwnd =5 (xmit 115) €= exiting fast recovery
Packets 111-114 already in flight

ACK 112 (due to 111) cwnd =5 + 1/5 < back in congestion avoidance

Putting it all together:
The TCP State Machine (partial)

timeou new
slow cwnd > ssthresh congstn. ACK
start < . avoid.
timeout

new ACK

timeout new ACK
dupACK=3

dupACK=3

fast
dupACK recovery

TCP Flavors

TCP-Tahoe

— cwnd =1 on triple dupACK
TCP-Reno

— cwnd =1 on timeout

— cwnd = cwnd/2 on triple dupack
TCP-newReno

— TCP-Reno + improved fast recovery
TCP-SACK

— incorporates selective acknowledgements

* What does TCP do?
— ARQ windowing, set-up, tear-down

 Flow Control in TCP

* Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput

TCP Throughput Equation

A Simple Model for TCP Throughput

A Simple Model for TCP Throughput

cwnd Timeouts

2
max

Packet drop rate,p=1/ A, where A = %W

Throughput, B = W A = \/E _ 1
(max)RTT 2 RTT\/;

138

Some implications: (1) Fairness

31
Through ut,B=\/7
=P 2 RTTp

* Flows get throughput inversely proportional to
RTT

— Is this fair?

Some Implications:
(2) How does this look at high speed?

Assume that RTT = 100ms, MSS=1500bytes

What value of p is required to go 100Gbps?
— Roughly 2 x 1012

How long between drops?
— Roughly 16.6 hours

How much data has been sent in this time?
— Roughly 6 petabits

These are not practical numbers!

Some implications:
(3) Rate-based Congestion Control

3 1
Throughput, B = \/7
=P 2 RTT.[p

* One can dispense with TCP and just match eqgtn:
— Equation-based congestion control
— Measure drop percentage p, and set rate accordingly
— Useful for streaming applications

Some Implications: (4) Lossy Links

TCP assumes all losses are due to congestion
What happens when the link is lossy?
Throughput ~ 1/sqrt(p) where p is loss prob.

This applies even for non-congestion losses!

Other Issues: Cheating

* Cheating pays off

* Some favorite approaches to cheating:
— Increasing CWND faster than 1 per RTT
— Using large initial CWND

— Opening many connections

Increasing CWND Faster

A

X

———B

\>

D

Y —

T E

X increases by 2 per RTT
y increases by 1 per RTT

144

A Closer look at problems
with
TCP Congestion Control

TCP State Machine

timeout
hew
du cwnd > ssthresh ACK
PACK 1 slow congstn.
® start < . avoid.
timeout
NupAck
new ACK
timeout new ACK
dupACK=3
dupACK=3
fast

dupACK recovery

TCP State Machine

timeout
hew
du cwnd > ssthresh ACK
PACK 1 slow congstn.
® start < . avoid.
timeout
NupAck
new ACK
imeout new ACK
dupACK=3
dupACK=3
fast

dupACK recovery

TCP State Machine

timeout
hew
du cwnd > ssthresh ACK
PACK 1 slow congstn.
X start < . avoid.
timeout
JUPACK
new ACK
imeout new ACK
dupACK=3
dupACK=3
fast

dupACK recovery

148

TCP State Machine

timeout
new
d cwnd > ssthresh ACK
UpACK 1 slow congstn.
¥ start /< . avoid.
timeout
§upACK
new ACK
imeout new ACK
dupACK=3
dupACK=3
fast

dupACK recovery

TCP Flavors

TCP-Tahoe
— CWND =1 on triple dupACK

TCP-Reno
— CWND =1 on timeout

— CWND = CWND/2 on triple dupack (Our default
TCP-newReno assumption

(&

— TCP-Reno + improved fast recovery
TCP-SACK

— incorporates selective acknowledgements

Interoperability

* How can all these algorithms coexist? Don’t
we need a single, uniform standard?

* What happens if I'm using Reno and you are
using Tahoe, and we try to communicate?

TCP Throughput Equation

A Simple Model for TCP Throughput

A Simple Model for TCP Throughput

cwnd Loss

2
max

Packet drop rate,p=1/ A, where A = %W

Throughput, B = W A = \/E _ 1
(max)RTT 2 RTT\/;

154

Implications (1): Different RTTs

3 1
Throughput = \/:
=P 2 RTT[p

* Flows get throughput inversely proportional to RTT
e TCP unfair in the face of heterogeneous RTTs!

Al Bl

100ms

A

@ bor%i,/ZECk B

155

Implications (2): High Speed TCP

3 1
Throughput =, |—
=P \/;RTT\/;

Assume RTT = 100ms, MSS=1500bytes

What value of p is required to reach 100Gbps throughput
— ~2x1012

How long between drops?
— ~16.6 hours

How much data has been sent in this time?
— ~ 6 petabits
These are not practical numbers!

Adapting TCP to High Speed

— Once past a threshold speed, increase CWND faster

— A proposed standard [Floyd’03]: once speed is past some threshold,
change equation to p~® rather than p>

— Let the additive constant in AIMD depend on CWND

* Other approaches?

— Multiple simultaneous connections (hack but works
today)

— Router-assisted approaches (will see shortly)

Implications (3): Rate-based CC

3 1
Throughput = \/:
=P 2 RTT[p

TCP throughput is “choppy”
— repeated swings between W/2 to W

Some apps would prefer sending at a steady rate

— e.g., streaming apps

A solution: “Equation-Based Congestion Control”
— ditch TCP’s increase/decrease rules and just follow the equation

— measure drop percentage p, and set rate accordingly

Following the TCP equation ensures we’re “TCP friendly”
— i.e., use no more than TCP does in similar setting 158

What does TCP do?
— ARQ windowing, set-up, tear-down

Flow Control in TCP

Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput

Limitations of TCP Congestion Control

Other Limitations of TCP
Congestion Control

(4) Loss not due to congestion?

* TCP will confuse any loss event with congestion

* Flow will cut its rate
— Throughput ~ 1/sgrt(p) where p is loss prob.
— Applies even for non-congestion losses!

 We'll look at proposed solutions shortly...

(5) How do short flows fare?

* 50% of flows have < 1500B to send; 80% < 100KB

* Implication (1): short flows never leave slow start!
— short flows never attain their fair share

* Implication (2): too few packets to trigger dupACKs
— Isolated loss may lead to timeouts

— At typical timeout values of ~500ms, might severely impact
flow completion time

(6) TCP fills up queues > long delays

* A flow deliberately overshoots capacity, until it
experiences a drop

* Means that delays are large for everyone

— Consider a flow transferring a 10GB file sharing a
bottleneck link with 10 flows transferring 100B

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT

Increasing CWND Faster

c1Y .
N\ X increases by 2 per RTT
\.>(, y increases by 1 per RTT
N

165

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT
— Opening many connections

Open Many Connections

X
DI =

Assume

e A starts 10 connections to B
e D starts 1 connectionto E

e Each connection gets about the same throughput

Then A gets 10 times more throughput than D

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT
— Opening many connections
— Using large initial CWND

* Why hasn’t the Internet suffered a congestion
collapse yet?

(8) CC intertwined with reliability

Mechanisms for CC and reliability are tightly coupled
e CWND adjusted based on ACKs and timeouts
e Cumulative ACKs and fast retransmit/recovery rules

Complicates evolution
e Consider changing from cumulative to selective ACKs
e A failure of modularity, not layering

Sometimes we want CC but not reliability
e e.g., real-time applications

Sometimes we want reliability but not CC (?)

Recap: TCP problems

—— e e
= ——-— e
—— -
- =
- =
- -~
~

-

o Misled by non-congestion losses

“~-__Fills up queues leading-to high delays,,x”

- —
~ o L - L
o -— il

— —— ~
— . —
— e - — —— _ = -

_Short flows complete before dlscovéFFrTg available

, AIMD impractical for high speed links \

[]
-’
[]

\
/

.+ Sawtooth discovery too choppy for some apps/.:'

\
N\

. Unfair under heterogeneous RTTs

”

— e o —
e e ———— T _—'————_____

e =T ——
-
-

=
— —
— o — - ——
e L e

[Could fix many of these with some help from routers! J
70

What does TCP do?
— ARQ windowing, set-up, tear-down

Flow Control in TCP

Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput

Limitations of TCP Congestion Control
Router-assisted Congestion Control

Router-Assisted Congestion Control

* Three tasks for CC:
— Isolation/fairness
— Adjustment
— Detecting congestion

How can routers ensure each flow gets its “fair
share”?

Fairness: General Approach

Routers classify packets into “flows”
— (For now) flows are packets between same source/destination

Each flow has its own FIFO queue in router

Router services flows in a fair fashion
— When line becomes free, take packet from next flow in a fair order

What does “fair” mean exactly?

Max-Min Fairness

 Given set of bandwidth demands r; and total bandwidth
C, max-min bandwidth allocations are:

a; = min(f, r,)
where f is the unique value such that Sum(a,) = C

'
\)C bits/s | :
A ’

r3

Example

- C=10; r=8,rn=6,r,=2; N=3
« C/3=333—

— Can service all of ry

— Remove r; from the accounting: C=C—-r; =8, N=2
« C/2=4 —

— Can’t service all of ry or r,

— So hold them to the remaining fair share: f = 4

f=4
8 \) 10 o4 m!ngg, j; =4
min(©, 4) =
5 e 2 min(2, 4) = 2

Max-Min Fairness

* Property:

— If you don’t get full demand, no one gets more than you

« This is what round-robin service gives if all packets are
the same size

177

How do we deal with packets of
different sizes?

Mental model: Bit-by-bit round robin (“fluid
flow”)

Can you do this in practice?
No, packets cannot be preempted

But we can approximate it
— This is what “fair queuing” routers do

Fair Queuing (FQ)

* For each packet, compute the time at which
the last bit of a packet would have left the
router if flows are served bit-by-bit

* Then serve packets in the increasing order of
their deadlines

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow

system

FQ
Packet
system

Example

2 3 4
> time
4 5
> time
2 3 4
3 4 .
> time
3 213 4 4
> time

Fair Queuing (FQ)

Think of it as an implementation of round-robin generalized
to the case where not all packets are equal sized

Weighted fair queuing (WFQ): assign different flows
different shares

Today, some form of WFQ implemented in almost all routers
— Not the case in the 1980-90s, when CC was being developed
— Mostly used to isolate traffic at larger granularities (e.g., per-prefix)

FQ vs. FIFO

* FQ advantages:
— Isolation: cheating flows don’t benefit
— Bandwidth share does not depend on RTT

— Flows can pick any rate adjustment scheme they
want

* Disadvantages:

— More complex than FIFO: per flow queue/state,
additional per-packet book-keeping

FQ in the big picture

* FQ does not eliminate congestion = it just
manages the congestion

400Mbps from

Will drop an additional
the green flow

If the green flow doesn’t drop its sending rate to
100Mbps, we’re wasting 400Mbps that could be
usefully given to the blue flow

Blue and Green get
0.5Gbps; any excess
will be dropped

. ® O

FQ in the big picture

FQ does not eliminate congestion =2 it just
manages the congestion

— robust to cheating, variations in RTT, details of delay,
reordering, retransmission, etc.

But congestion (and packet drops) still occurs

And we still want end-hosts to discover/adapt to
their fair share!

What would the end-to-end argument say w.r.t.
congestion control?

Fairness is a controversial goal

What if you have 8 flows, and | have 4?
— Why should you get twice the bandwidth

What if your flow goes over 4 congested hops, and mine only
goes over 17
— Why shouldn’t you be penalized for using more scarce bandwidth?

And what is a flow anyway?
— TCP connection
— Source-Destination pair?
— Source?

Router-Assisted Congestion Control

* CC has three different tasks:

— Rate adjustment

— Detecting congestion

Why not just let routers tell endhosts what rate
they should use?

Packets carry “rate field”

Routers insert “fair share” f in packet header
— Calculated as with FQ

End-hosts set sending rate (or window size) to f
— hopefully (still need some policing of endhosts!)

This is the basic idea behind the “Rate Control
Protocol” (RCP) from Dukkipati et al. '07

Flow Completion Time: TCP vs. RCP (Ignore XCP)

Flow Duration (secs) vs. Flow Size # Active Flows vs. time

100 9000

XCP ——n
TCP

8000

' RCP
7000
10 ¢ 6000 #
5000
4000
i | <» XCP -
- i TCP o i
3000 X RCP ; NN NEN NEE RDD
2000 ;l (LIRLIRLIRIIRLINIINIIRIIRIINIINIINIIRIINIINIINIINIINIINIIN]]] l:
0 1 | l 1000 | | | | |
- 0 50 100 150 200 250 300

0 2000 4000 6000 8000 10000

Flow Size [pkts] Time (secs)

sequence number

sequence number

Why the improvement?

1 1.2 1.4 1.6

13

189

Router-Assisted Congestion Control

* CC has three different tasks:

— Detecting congestion

Explicit Congestion Notification (ECN)

Single bit in packet header; set by congested routers
— |f data packet has bit set, then ACK has ECN bit set

Many options for when routers set the bit
— tradeoff between (link) utilization and (packet) delay
Congestion semantics can be exactly like that of drop

— l.e., endhost reacts as though it saw a drop

Advantages:
— Don’t confuse corruption with congestion; recovery w/ rate adjustment
— Can serve as an early indicator of congestion to avoid delays

— Easy (easier) to incrementally deploy
» defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)

One final proposal: Charge people for
congestion!

Use ECN as congestion markers
Whenever | get an ECN bit set, | have to pay SS
Now, there’s no debate over what a flow is, or what fair is...

|dea started by Frank Kelly here in Cambridge

III

— “optimal” solution, backed by much math
— QGreat idea: simple, elegant, effective

— Unclear that it will impact practice — although London congestion works

Some TCP issues outstanding...

Synchronized Flows Many TCP Flows
» Aggregate window has same * Independent, desynchronized
dynamics « Central limit theorem says the
« Therefore buffer occupancy has aggregate becomes Gaussian
same dynamics Variance (buffer size) decreases
* Rule-of-thumb still holds. as N increases
E WmM“ Gaussian _Afl_t t ean 7729.1 Packets, StdDev 252% —
Wmax 60 |- Mg M
27 Buffer Size |1
W w0l F‘ I I I T ’r
Wmax I I I\ || I
2 ‘ | | /, [Hhﬂh‘
o | | e

193

TCP in detail

What does TCP do?
— ARQ windowing, set-up, tear-down

Flow Control in TCP

Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput

Limitations of TCP Congestion Control
Router-assisted Congestion Control

Recap

* TCP:

— somewhat hacky
— but practical/deployable

— good enough to have raised the bar for the
deployment of new, more optimal, approaches

— though the needs of datacenters might change the
status quos

