Computer Graphics ঞ্ Image Processing

Computer Laboratory

Computer Science Tripos Part IB
Neil Dodgson \& Peter Robinson
Michaelmas Term 2013

William Gates Building 15 JJ Thomson Avenue Cambridge
CB3 0FD
http://www.cl.cam.ac.uk/

This handout includes copies of the slides that will be used in lectures together with some suggested exercises for supervisions. These notes do not constitute a complete transcript of all the lectures and they are not a substitute for text books. They are intended to give a reasonable synopsis of the subjects discussed, but they give neither complete descriptions nor all the background material.

Material is copyright © Neil A Dodgson \& Peter Robinson, 1996-2013, except where otherwise noted. All other copyright material is made available under the University’s licence.
All rights reserved.

Computer Graphics \& Image Processing

```
+ Sixteen lectures for Part IB CST
- Introduction
- 2D computer graphics
- 3D computer graphics
- Colour and displays
- Image processing
+ Two exam questions on Paper 4
```


What are CG \& IP used for?

- 2D computer graphics
- graphical user interfaces: Mac, Windows, X,...
- graphic design: posters, cereal packets,..
- typesetting: book publishing, report writing...
- Image processing
- photograph retouching: publishing, posters,...
- photocollaging: satellite imagery,..
- art: new forms of artwork based on digitised images
- 3D computer graphics
- visualisation: scientific, medical, architectural,...
- Computer Aided Design (CAD)
- entertainment: special effect, games, movies,...

Background
+ what is a digital image?
+ what are the constraints on digital images?
how does human vision work?
\&hat are the limits of human vision?
+ what can we get away with given these constraints \& limits?
Later on in the course we will ask:
+ how do we represent colour?
+ how do displays \& printers work?
\& how do we fool the human eye into seeing what we want it to
see?
What is an image?
+ two dimensional function
+ value at any point is an intensity or colour
+ not digita!!
What is a digital image?
+ a contradiction in terms
\& if you can see it, it's not digital digital, it's just a collection of numbers
+ a sampled and quantised version of a real image
+ a rectangular array of intensity or colour values

Image display

+ a digital image is an array of integers, how do you display it?
+ reconstruct a real image on some sort of display device
- LCD - portable computer, video projector
- DMD - video projector
- EPS - electrophoretic display "e-paper"
- printer - ink jet, laser printer, dot matrix, dye sublimation, commercial typesetter

Different ways of displaying the same digital image

Nearest-neighbour e.g. LCD

Gaussian e.g. cathode ray tube

Half-toning e.g. inkjet printer

+ the display device has a significant effect on the appearance of the displayed image

Quantisation

+ each intensity value is a number
+ for digital storage the intensity values must be quantised
- limits the number of different intensities that can be stored
- limits the brightest intensity that can be stored
thow many intensity levels are needed for human consumption

$$
\text { - } 8 \text { bits often sufficient }
$$

some applications use 10 or 12 or 16 bits - more detail later in the course

+ colour is stored as a set of numbers - usually as 3 numbers of $5-16$ bits each
- more detail later in the course

Light detectors in the retina

t two classes

- rods
- cones
+ cones come in three types
- sensitive to short, medium and long wavelengths
- allow you to see in colour
+ the cones are concentrated in the macula, at the centre of the retina
+ the fovea is a densely packed region in the centre of the macula
- contains the highest density of cones
- provides the highest resolution vision

Foveal vision

$+150,000$ cones per square millimetre in the fovea

- high resolution
- colour

+ outside fovea: mostly rods

- lower resolution
many rods' inputs are combined to produce one signal to the visual cortex in the brain
- principally monochromatic
there are very few cones, so little input available to provide colour information to the brain
- provides peripheral vision
allows you to keep the high resolution region in context without peripheral vision you would walk into things, be unable to find things easily, and generally find life much more difficult

Some of the processing in the eye

+ discrimination

- discriminates between different intensities and colours
+ adaptation
- adapts to changes in illumination level and colour
- can see about I:I00 contrast at any given time
- but can adapt to see light over a range of 10^{10}
+ persistence
- I integrates light over a period of about $1 / 30$ second
+ edge detection and edge enhancement
- visible in e.g. Mach banding effects
Intensity adaptation

Intensity differentiation

+ the eye can obviously differentiate between different colours and different intensities
+ Weber's Law tells us how good the eye is at distinguishing different intensities using just noticeable differences

- start with $\Delta l=0$ increase $\Delta /$ until human observer can just see a difference
- start with ΔI large
decrease $\Delta /$ until human observer can just not see a difference
foreground at intensity $I+\Delta I$

26

Summary of what human eyes do...

+ sample the image that is projected onto the retina
+ adapt to changing conditions
+ perform non-linear pre-processing
- makes it very hard to model and predict behaviour
+ combine a large number of basic inputs into a much smaller set of signals
- which encode more complex data
- e.g. presence of an edge at a particular location with a particular orientation rather than intensity at a set of locations
+ pass pre-processed information to the visual cortex
- which performs extremely complex processing
- discussed in the Computer Vision course

Implications of vision on resolution

* the acuity of the eye is measured as the ability to see a white gap, I minute wide, between two black lines
- about 300 dpi at 30 cm
- the corresponds to about 2 cone widths on the fovea
- resolution decreases as contrast decreases
- colour resolution is much worse than intensity resolution - this is exploited in TV broadcast
analogue television broadcasts the colour signal at half the
horizontal resolution of the intensity signal

Implications of vision on quantisation

+ humans can distinguish, at best, about a 2% change in intensity
- not so good at distinguishing colour differences
+ we need to know what the brightest white and darkest black are
- most modern display technologies (CRT, LCD, plasma) have contrast ratios in the hundreds
- ranging from 100:1 to about 600:1
- movie film has a contrast ratio of about 1000:I
$t \Rightarrow 12-16$ bits of intensity information
- assuming intensities are distributed linearly - this allows for easy computation
- 8 bits are often acceptable, except in the dark regions

Colour images

- tend to be 24 bits per pixel
- 3 bytes: one red, one green, one blue
- increasing use of 48 bits per pixel, 2 bytes per colour plane
\star can be stored as a contiguous block of memory - of size $W \times H \times 3$
- more common to store each colour in a separate "plane"
- each plane contains just $W \times H$ values
- the idea of planes can be extended to other attributes associated with each pixel
- alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a datc structure containing depth and coverage information), overlay planes (e.g. for displaying pop-up menus) - see later in the course for details

Double buffering

- if we allow the currently displayed image to be updated then we may see bits of the image being displayed halfway through the update
- this can be visually disturbing, especially if we want the illusion of smooth animation
- double buffering solves this problem: we draw into one frame buffer and display from the other

Which pixels do we use?

for lines of slope less than 45
we can have either one or two
pixels in each column

\boldsymbol{x}
every pixel through which the
line pass lines of slope less than 45
we always have just one pixel
in every column

A line drawing algorithm - preparation I

+ pixel (x, y) has its centre at real co-ordinate (x, y)
- it thus stretches from $(x-1 / 2, y-1 / 2)$ to $(x+1 / 2, y+1 / 2)$

Beware: not every graphics system uses this convention. Some put
real co-ordinate (x, y) at the bottom left hand corner of the pixel.

Bresenham's line drawing algorithm for integer end points

Initialisation

J. E. Bresenham, "Algorithm for Computer Control of a Digital Plotter", IBM Systems Journal, 4(I), 1965

Uses of the line drawing algorithm

+ to draw lines
+ as the basis for a curve-drawing algorithm
+ to draw curves as a sequence of lines
+ as the basis for iterating on the edges of polygons in
the polygon filling algorithms

A second line drawing algorithm

+ a line can be specified using an equation of the form:

$$
k(x, y)=a x+b y+c
$$

For a line segment from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$, the line is defined by: $a=y_{1}-y_{0}$

$$
b=-\left(x_{1}-x_{0}\right)
$$

$$
c=x_{1} y_{0}-x_{0} y_{1}
$$

+ this divides the plane into three regions:
- above the line $\boldsymbol{k}<\mathbf{0}$
\bullet below the line $\boldsymbol{k}>\mathbf{0}$
- on the line $\boldsymbol{k}=\mathbf{0}$

Midpoint line drawing algorithm I

Midpoint line drawing algorithm 2

+ first work out the iterative step
- it is often easier to work out what should be done on each iteration and only later work out how to initialise and terminate the iteration
+ given that a particular pixel is on the line,
the next pixel must be either immediately to the right
(E) or to the right and up one (NE)
t use a decision variable (based on k) to determine which way to go
+ decision variable needs to make a decision at point $\left(x+1, y^{+1 / 2}\right)$

$$
d=a(x+1)+b(y+1 / 2)+c
$$

+ if go E then the new decision variable is at
$\left(x+2, y^{+1 / 2}\right)$

$$
\begin{aligned}
d^{\prime} & =a(x+2)+b(y+1 / 2)+c \\
& =d+a
\end{aligned}
$$

+ if go NE then the new decision variable is at $\left(x+2, y+1^{1 / 2}\right)$

$$
d^{\prime}=a(x+2)+b(y+11 / 2)+c
$$

$$
=d+a+b
$$

Midpoint line drawing algorithm 3

Midpoint - comments

+ this version only works for lines in the first octant - extend to other octants as for Bresenham
+ it is not immediately obvious that Bresenham and Midpoint give identical results, but it can be proven that they do
+ Midpoint algorithm can be generalised to draw arbitrary circles \& ellipses
- Bresenham can only be generalised to draw circles with integer radii
\quad Curves
+ circles \& ellipses
+ Bézier cubics
■ Pierre Bézier, worked in CAD for Renault
- de Casteliau invented them five years earlier at Citroën
but Citroën would not let him publish the results
- widely used in graphic design \& typography
Midpoint circle algorithm I
+ equation of a circle is $\quad x^{2}+y^{2}=r^{2}$
$=$ centred at the origin
+ decision variable can be $\quad d=x^{2}+y^{2}-r^{2}$
+ divide circle into eight octants

= on the next slide we consider only
the second octant, the others are
similar

\quad Midpoint circle algorithm 2

Midpoint circle algorithm 3

+ Drawing an origin-centred circle in all eight octants

The second-octant algorithm thus allows you to draw the whole circle.

Taking circles further

Are circles \& ellipses enough?

+ the algorithm can be easily extended to circles not centred at the origin
+ a similar method can be derived for ovals
- but: cannot naively use octants
- use points of 45° slope to divide oval into eight sections

- and: ovals must be axis-aligned
- there is a more complex algorithm which
can be used for non-axis aligned ovals
simple drawing packages use ellipses \& segments of ellipses
)

+ for graphic design \& CAD need something with more flexibility
- use cubic polynomials
lower orders (linear, quadratic) cannot:
\% have a point of inflection
$\%$ match both position and slope at both ends of a segment
\%be non-planar in 3D
higher orders (quartic, quintic,...):
\% can wiggle too much
$\%$ take longer to compute

| Hermite cubic |
| :--- | :--- |

Bézier cubic
\& difficult to think in terms of tangent vectors

+ Bézier defined by two end points and two other
control points
$P(t)=(1-t)^{3} P_{0}$
$+3 t(1-t)^{2} P_{1}$
$+3 t^{2}(1-t) P_{2}$
$+t^{3} P_{3}$

Bezier properties

+ Bezier is equivalent to Hermite

$$
T_{0}=3\left(P_{1}-P_{0}\right) \quad T_{1}=3\left(P_{3}-P_{2}\right)
$$

+ Weighting functions are Bernstein polynomials $b_{0}(t)=(1-t)^{3} \quad b_{1}(t)=3 t(1-t)^{2} \quad b_{2}(t)=3 t^{2}(1-t) \quad b_{3}(t)=t^{3}$
+ Weighting functions sum to one

$$
\sum_{i=0}^{3} b_{i}(t)=1
$$

+ Bezier curve lies within convex hull of its control points
- because weights sum to 1 and all weights are positive

Types of curve join

+ each curve is smooth within itself
+ joins at endpoints can be:
- C_{1} - continuous in both position and tangent vector
- smooth join in a mathematical sense
- G_{1} - continuous in position, tangent vector in same direction - smooth join in a geometric sense
- C_{0} - continuous in position only
- "corner"
- discontinuous in position
C_{n} (mathematical continuity): continuous in all derivatives up to the $n^{\text {th }}$ derivative
G_{n} (geometric continuity): each derivative up to the nth has the same "direction"
to its vector on either side of the join
$C_{n} \Rightarrow G_{n}$
- draw as a set of short line segments equispaced in parameter space, t

$$
\begin{aligned}
(x 0, y 0)= & \text { Bezier }(0) \\
\text { FOR } t= & 0.05 \text { TO } 1 \text { STEP } 0.05 \text { DO } \\
& (x 1, y 1)=\operatorname{Bezier}(\mathrm{t}) \\
& \text { DrawLine }((x 0, y 0),(x 1, y 1)) \\
& (x 0, y 0)=(x 1, y 1)
\end{aligned}
$$

- problems:

- cannot fix a number of segments that is appropriate for all possible Beziers: too many or too few segments
- distance in real space, (x, y), is not linearly related to distance in parameter space, t

Drawing a Bezier cubic - adaptive method

+ adaptive subdivision
 approximation to the Bezier
- if so: draw the straight line
- if not: divide the Bezier into two halves, each a Bezier, and repeat for the two new Beziers
+ need to specify some tolerance for when a straight line is an adequate approximation
* when the Bezier lies within half a pixel width of the straight line along its entire length

Drawing a Bezier cubic (continued)

Subdividing a Bezier cubic into two halves

+ a Bezier cubic can be easily subdivided into two smaller Bezier cubics

$$
\begin{array}{ll}
Q_{0}=P_{0} & R_{0}=\frac{1}{8} P_{0}+\frac{3}{8} P_{1}+\frac{3}{8} P_{2}+\frac{1}{8} P_{3} \\
Q_{1}=\frac{1}{2} P_{0}+\frac{1}{2} P_{1} & R_{1}=\frac{1}{4} P_{1}+\frac{1}{2} P_{2}+\frac{1}{4} P_{3} \\
Q_{2}=\frac{1}{4} P_{0}+\frac{1}{2} P_{1}+\frac{1}{4} P_{2} & R_{2}=\frac{1}{2} P_{2}+\frac{1}{2} P_{3} \\
Q_{3}=\frac{1}{8} P_{0}+\frac{3}{8} P_{1}+\frac{3}{8} P_{2}+\frac{1}{8} P_{3} & R_{3}=P_{3}
\end{array}
$$

Exercise: prove that the Bezier cubic curves defined by $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ and $R_{0}, R_{1}, R_{2}, R_{3}$ match the Bezier cubic curve defined by $P_{0}, P_{1}, P_{2}, P_{3}$ over the ranges $t \in[0,1 / 2]$ and $t \in[1 / 2,1]$ respectively

What if we have no tangent vectors?

- base each cubic piece on the four surrounding data points

- at each data point the curve must depend solely on the three surrounding data points
- define the tangent at each point as the direction from the preceding point to the succeeding point
tangent at P_{1} is $1 / 2\left(P_{2}-P_{0}\right)$, at P_{2} is $1 / 2\left(P_{3}-P_{1}\right)$
\star this is the basis of Overhauser's cubic

```
Overhauser's cubic
- method for generating Bezier curves which match Overhauser's model
- simply calculate the appropriate Bezier control point locations from the given points
e.g. given points \(A, B, C, D\), the Bezier control points are:
\(P_{0}=B\)\(\quad \begin{gathered}P_{1}=B+(C-A) / 6\end{gathered}\) \(P_{3}=C \quad P_{2}=C-(D-B) / 6\)
- Overhauser's cubic interpolates its controlling data points - good for control of movement in animation
- not so good for industrial design because moving a single point modifies the surrounding four curve segments
compare with Bezier where moving a single point modifies just the two segments connected to that point
Overhauser worked for the Ford motor company in the 1960 s
```


Simplifying line chains

this can be thought of as an inverse problem to the one of drawing Bezier curves
problem specification: you are given a chain of line segments at a very high resolution, how can you reduce the number of line segments without compromising quality

- e.g. given the coastline of Britain defined as a chain of line segments at one metre resolution, draw the entire outline on a 1280×1024 pixe screen
- the solution: Douglas \& Peucker's line chain simplification algorithm

This can also be applied to chains of Bezier curves at high resolution: most of the curves will each be approximated (by the previous algorithm) as a single line segment, Douglas \& Peucker's algorithm can then be used to further simplify the line chain

Douglas \& Peucker's algorithm

- find point, C, at greatest distance from line segment $A B$
- if distance from C to $A B$ is more than some specified tolerance then subdivide into $A C$ and $C B$, repeat for each of the two subdivisions
- otherwise approximate entire chain from A to B by the single line segment $A B$

Clipping

+ what about lines that go off the edge of the screen?
* need to clip them so that we only draw the part of the line that is actually on the screen
+ clipping points against a rectangle

$$
\begin{aligned}
& \text { need to check against four edges: } \\
& \qquad \begin{array}{l}
x=x_{L} \\
x=x_{R} \\
y=y_{B} \\
y=y_{T}
\end{array}
\end{aligned}
$$

Clipping lines against a rectangle - naïvely
P_{1} to $P_{2}=\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$
$P(t)=(1-t) P_{1}+t P_{2}$
$x(t)=(1-t) x_{1}+t x_{2}$
$y(t)=(1-t) y_{1}+t y_{2}$

This is naive because a lot
of unnecessary operations
will be done for most lines.

- do this operation for each of the four edges
to intersect with $x=x_{L}$
if $\left(x_{1}=x_{2}\right)$ then no intersection
else
$x_{L}=\left(1-t_{L}\right) x_{1}+t_{L} x_{2}$
$\Rightarrow t_{L}=\frac{x_{L}-x_{1}}{x_{2}-x_{1}}$
if $\left(0 \leq t_{L} \leq 1\right)$
then line segment intersects
$x=x_{L}$ at $\left(x\left(t_{L}\right), y\left(t_{L}\right)\right)$
else line segment does not intersect edge

Clipping lines against a rectangle - examples

- you can naïvely check every line against each of the four edges - this works but is obviously inefficient
- adding a little cleverness improves efficiency enormously - Cohen-Sutherland clipping algorithm

Cohen-Sutherland clipper I

- make a four bit code, one bit for each inequality $A \equiv x<x_{L} \quad B \equiv x>x_{R} \quad C \equiv y<y_{B} \quad D \equiv y>y_{T}$

- evaluate this for both endpoints of the line

$$
Q_{1}=A_{1} B_{1} C_{1} D_{1} \quad Q_{2}=A_{2} B_{2} C_{2} D_{2}
$$

Ivan Sutherland is one of the founders of Evans \& Sutherland, manufacturers of flight simulator systems

Cohen-Sutherland clipper 3

- if code has more than a single I then you cannot tell which is the best: simply select one and loop again
- horizontal and vertical lines are not a problem Why not?
\bullet need a line drawing algorithm that can cope with floating-point endpoint co-ordinates devising.

Cohen-Sutherland clipper 2

- $Q_{1}=Q_{2}=\mathbf{0}$
- both ends in rectangle ACCEPT
$-Q_{1} \wedge Q_{2} \neq 0$
- both ends outside and in same half-plane REJECT
- otherwise
- need to intersect line with one of the edges and start again
you must always re-evaluate Q and recheck the above tests after doing a single clip
- the I bits tell you which edge to clip against

Scanline polygon fill algorithm

(1) take all polygon edges and place in an edge list (EL), sorted on lowest y value
2) start with the first scanline that intersects the polygon, get all edges which intersect that scan line and move them to an active edge list (AEL)
3 for each edge in the AEL: find the intersection point with the current scanline; sort these into ascending order on the x value (4) fill between pairs of intersection points
© move to the next scanline (increment y); move new edges from EL to AEL if start point $\leq \boldsymbol{y}$; remove edges from the AEL if endpoint $<\boldsymbol{y}$; if any edges remain in the AEL go back to step (3)

90
Sutherland-Hodgman polygon clipping 2

- the algorithm progresses around the polygon checking if each edge crosses the clipping line and outputting the appropriate points

Exercise: the Sutherland-Hodgman algorithm may introduce new edges along the edge of the clipping polygon - when does this happen and why?

Sutherland-Hodgman polygon clipping 3

```
\(\Rightarrow\) line segment defined by \(\left(x_{s}, y_{s}\right)\) and \(\left(x_{e}, y_{e}\right)\)
line segment is: \(p(t)=(1-t) s+t e\)
- clipping edge defined by \(a x+b y+c=0\)
test to see which side of edge \(s\) and \(e\) are on:
    - \(k=a x+b y+c\)
    - \(k\) negative: inside, \(k\) positive: outside, \(k=0\) : on edge
- if \(k_{s}\) and \(k_{e}\) differ in sign then intersection point can be found by:
    \(a\left((1-t) x_{s}+t x_{e}\right)+b\left((1-t) y_{s}+t y_{e}\right)+c=0\)
    \(\Rightarrow t=\frac{a x_{s}+b y_{s}+c}{a\left(x_{s}-x_{e}\right)+b\left(y_{s}-y_{e}\right)}\)
```

+ scale
+ rotate

Basic 2 scale - about origin - by factor m - rotate - about origin - by angle θ translate - along vector ($x_{o} y_{o}$) shear - parallel to x axis - by factor \boldsymbol{a}	ansformatio $\begin{aligned} & x^{\prime}=m x \\ & y^{\prime}=m y \\ & x^{\prime}=x \cos \theta-y \sin \theta \\ & y^{\prime}=x \sin \theta+y \cos \theta \\ & x^{\prime}=x+x_{o} \\ & y^{\prime}=y+y_{o} \\ & x^{\prime}=x+a y \\ & y^{\prime}=y \end{aligned}$	

Matrix representation of transformations

$$
\begin{array}{cc}
+ \text { scale } & + \text { rotate } \\
\qquad \text { about origin, factor } \boldsymbol{m} & \text { about origin, angle } \theta \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} & {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
+ & \text { do nothing } \\
& + \text { shear } \\
& \text { identity } \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} & {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

Homogeneous 2D co-ordinates

translations cannot be represented using simple 2D matrix multiplication on 2D vectors, so we switch to
homogeneous co-ordinates

$$
(x, y, w) \equiv\left(\frac{x}{w}, \frac{y}{w}\right)
$$

- an infinite number of homogeneous co-ordinates map to every 2D point
- w=0 represents a point at infinity
- usually take the inverse transform to be:

$$
(x, y) \equiv(x, y, 1)
$$

Matrices in homogeneous co-ordinates

+ scale

- about origin, factor m
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{lll}m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$
+ do nothing
- identity
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$
+ rotate
- about origin, angle θ
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$
+ shear
- parallel to x axis, factor a
97

Translation by matrix algebra

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & x_{o} \\
0 & 1 & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

In homogeneous coordinates

$$
x^{\prime}=x+w x_{o} \quad y^{\prime}=y+w y_{o} \quad w^{\prime}=w
$$

In conventional coordinates

$$
\frac{x^{\prime}}{w^{\prime}}=\frac{x}{w}+x_{0} \quad \frac{y^{\prime}}{w^{\prime}}=\frac{y}{w}+y_{0}
$$

Concatenating transformations

often necessary to perform more than one transformation on the same object

- can concatenate transformations by multiplying their matrices e.g. a shear followed by a scaling:

Concatenation is not commutative

+ be careful of the order in which you concatenate transformations

Bounding boxes

* when working with complex objects, bounding boxes can be used to speed up some operations

Clipping with bounding boxes

- do a quick accept/reject/unsure test to the bounding box then apply clipping to only the unsure objects

$B B_{L}>x_{R} \vee B B_{R}<x_{L} \vee B B_{B}>x_{T} \vee B B_{T}<x_{B} \Rightarrow R E J E C T$
$B B_{L} \geq x_{L} \wedge B B_{R} \leq x_{R} \wedge B B_{B} \geq x_{B} \wedge B B_{T} \leq x_{T} \Rightarrow A C C E P T$
otherwise \Rightarrow clip at next higher level of detail

Clipping Bézier curves

103

If flat \Rightarrow draw using clipped line drawing algorithm
Else consider the Bézier's bounding box
accept \Rightarrow draw using normal (unclipped) Bézier algorithm
reject \Rightarrow do not draw at all
unsure \Rightarrow split into two Béziers, recurse

Application 2: typography

- typeface: a family of letters designed to look good together - usually has upright (roman/regular), italic (oblique), bold and bold-italic members abcd efgh $\mathbf{i j k l}$ mnop - Gill Sans abcd efgh $\mathbf{i j k l}$ mnop - Times abcd efgh ijkl mnop - Arial abcd efgh ijkl mnop - Garamond
- two forms of typeface used in computer graphics
- pre-rendered bitmaps
single resolution (don't scale well) use BitBIT to put into frame buffer

- outline definitions
multi-resolution (can scale)
need to render (fill) to put into frame buffer
These notes are mainly set in Gill Sans, a lineale (sans-serif) typeface designed by Eric
Gill for Monotype, 1928-30. The lowercase italic p is particularly interesting. Mathematics is The Times in 1931, the design supervised by Stanley Morison.

\quad 3D Computer Graphics
+ 3D versions of 2D operations
\quad \& clipping, transforms, matrices, curves \& surfaces
+ 3D \Rightarrow 2D projection
+ 3D scan conversion

\& depth-sort, BSP tree, z-Buffer, A-buffer

+ lighting
+ texture mapping

Three-dimensional objects

polyhedra comprise multiple connected
polygons

polygon meshes
\# open or closed
- manifold or non-manifold
\& curved surfaces
■ must be converted to polygons to be drawn

+ same as curves in 2D, with an extra co-ordinate for each point
+ e.g. Bezier cubic in 3D:

$$
\begin{gathered}
P(t)=(1-t)^{3} P_{0} \\
+3 t(1-t)^{2} P_{1} \\
+3 t^{2}(1-t) P_{2} \\
+t^{3} P_{3}
\end{gathered}
$$

where: $P_{i} \equiv\left(x_{i}, y_{i}, z_{i}\right)$

Bezier patch definition

the Bezier patch defined by the sixteen control points,
$P_{0,0}, P_{0,1} \ldots, P_{3,3}$ is:

$$
P(s, t)=\sum_{i=0}^{3} \sum_{j=0}^{3} b_{i}(s) b_{j}(t) P_{i, j}
$$

where: $b_{0}(t)=(1-t)^{3} \quad b_{1}(t)=3 t(1-t)^{2} \quad b_{2}(t)=3 t^{2}(1-t) \quad b_{3}(t)=t^{3}$

- compare this with the 2D version:

$$
P(t)=\sum_{i=0}^{3} b_{i}(t) P_{i}
$$

Continuity between Bezier patches

+ each patch is smooth within itself
+ ensuring continuity in 3D:
- C_{0} - continuous in position
- the four edge control points must match
- C_{1} - continuous in both position and tangent vector
- the four edge control points must match
- the two control points on either side of each of the four edge control points must be co-linear with both the edge point and each other and be equidistant from the edge point
- G_{1} - continuous in position and tangent direction
- the four edge control points must match
- the relevant control points must be co-linear
- see picture

Drawing Bezier patches

- in a similar fashion to Bezier curves, Bezier patches can be drawn by approximating them with planar polygons
- simple method
- select appropriate increments in s and t and render the resulting quadrilaterals
- tolerance-based adaptive method
- check if the Bezier patch is sufficiently well approximated by a quadrilateral, if so use that quadrilateral
- If not then subdivide it into two smaller Bezier patches and repeat on each subdivide in different dimensions on alternate calls to the subdivision function
- having approximated the whole Bezier patch as a set of (non-planar) quadrilaterals, further subdivide these into (planar) triangles be careful to not leave any gaps in the resulting surface!

A transformation example I

- the graphics package Open Inventor defines a cylinder to be: centre at the origin, $(0,0,0)$
radius I unit
height 2 units, aligned along the y-axis
- this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations
- we want to draw a cylinder of:
radius 2 units
the centres of its two ends located at $(1,2,3)$ and $(2,4,5)$
* its length is thus 3 units
- what transforms are required?
and in what order should they be applied?

A transformation example 3

+ rotation is a multi-step process
- break the rotation into steps, each of which is rotation about a principal axis
- work these out by taking the desired orientation back to the original axis-aligned position
the centres of its two ends located at $(1,2,3)$ and $(2,4,5)$
- desired axis: $(2,4,5)-(1,2,3)=(1,2,2)$
- original axis: y-axis $=(0, I, 0)$
A transformation example 4

$*$| desired axis: $(2,4,5)-(1,2,3)=(1,2,2)$ |
| :---: |
| original axis: y-axis $=(0,1,0)$ |
| $*$ zero the z-coordinate by rotating about the x-axis |
| $\mathbf{R}_{1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ |
| $\theta=-\arcsin \frac{2}{\sqrt{2^{2}+2^{2}}}$ |

A transformation example 5

$$
\text { then zero the } x \text {-coordinate by rotating about the } z \text {-axis }
$$

$*$ we now have the object's axis pointing along the y-axis
$\mathbf{R}_{2}=\left[\begin{array}{cccc}\cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\varphi=\arcsin \frac{1}{\sqrt{1^{2}+\sqrt{8}^{2}}}$

A transformation example 6 + the overall transformation is: - first scale - then take the inverse of the rotation we just calculated - finally translate to the correct position $\left[\begin{array}{l} x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime} \end{array}\right]=\mathbf{T} \times \mathbf{R}_{1}^{-1} \times \mathbf{R}_{2}^{-1} \times \mathbf{S} \times\left[\begin{array}{l} x \\ y \\ z \\ w \end{array}\right]$

OpenGL's transformation mechanism

+ there is a current transformation matrix that is
applied to every vertex that is drawn
+ the current transformation matrix is set to
identity by the OpenGL system before entering the
renderFrame function
+ gITranslate, g/Scale, glRotate, etc, create matrices that
are multiplied by the current transformation
matrix to make a new current transformation
matrix
3D \Rightarrow 2D projection
+ to make a picture
3D world is projected to a 2D image
- like a camera taking a photograph
- the three dimensional world is projected onto a plane

145
Projection as a matrix operation

A variety of transformations

- the modelling transform and viewing transform can be multiplied together to produce a single matrix taking an object directly from object co-ordinates into viewing co-ordinates
- either or both of the modelling transform and viewing transform matrices can be the identity matrix
e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates
- this is a useful set of transforms, not a hard and fast model of how things should be done

Perspective projection

 with an arbitrary camera- we have assumed that:
- screen centre at ($\mathbf{0}, \mathbf{0}, \mathbf{d}$)

■ screen parallel to $x y$-plane

- \mathbf{z}-axis into screen
- y-axis up and x-axis to the right
- eye (camera) at origin ($\mathbf{0 , 0 , 0}$)
- for an arbitrary camera we can either:
- work out equations for projecting objects about an arbitrary point onto an arbitrary plane
- transform all objects into our standard co-ordinate system (viewing co-ordinates) and use the above assumptions

Viewing transform 4

- having rotated the viewing vector onto the $y z$ plane, rotate it about the x-axis so that it aligns with the z-axis

$$
\mathbf{l}^{\prime \prime \prime}=\mathbf{R}_{1} \times \mathbf{l}^{\prime \prime}
$$

$$
\begin{aligned}
\mathbf{R}_{2} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi & 0 \\
0 & \sin \varphi & \cos \varphi & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\varphi & =\arccos \frac{l_{2}^{\prime \prime \prime}}{\sqrt{l^{\prime \prime \prime}{ }_{y}^{2}+\left.l^{\prime \prime \prime}\right|_{z} ^{2}}}
\end{aligned}
$$

* the final step is to ensure that the up vector actually points up, i.e. along the positive y-axis
- actually need to rotate the up vector about the z-axis so that it lies in the positive y half of the $y z$ plane

$\mathbf{u}^{\prime \prime \prime}=\mathbf{R}_{2} \times \mathbf{R}_{1} \times \mathbf{u}$	why don't we need to multiply \mathbf{u} by \mathbf{S} or \mathbf{T} ?
$\begin{aligned} & \mathbf{R}_{3}=\left[\begin{array}{cccc} \cos \psi & -\sin \psi & 0 & 0 \\ \sin \psi & \cos \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \\ & \psi=\arccos \frac{u^{\prime \prime \prime \prime} y_{y}}{\sqrt{u^{\prime \prime \prime \prime}{ }_{x}^{2}+u^{\prime \prime \prime "_{y}^{2}}}} \end{aligned}$	\mathbf{u} is a vector rather than a point, vectors do not get translated scaling \mathbf{u} by a uniform scaling matrix would make no difference to the direction in which it points

Viewing transform 6

Clipping in 3D

+ clipping against a volume in viewing co-ordinates

- in particular:

$$
\mathbf{e} \rightarrow(0,0,0) \quad \mathbf{l} \rightarrow(0,0, d)
$$

* the matrices depend only on e, 1 , and u, so they can be premultiplied together

$$
\mathbf{M}=\mathbf{R}_{3} \times \mathbf{R}_{2} \times \mathbf{R}_{1} \times \mathbf{S} \times \mathbf{T}
$$

Clipping in 3D - two methods

+ clip against the viewing frustum
- need to clip against six planes

$$
x=-z \frac{a}{d} \quad x=z \frac{a}{d} \quad y=-z \frac{b}{d} \quad y=z \frac{b}{d} \quad z=z_{f} \quad z=z_{b}
$$

+ project to 2D (retaining z) and clip against the axisaligned cuboid
- still need to clip against six planes
$x=-a \quad x=a \quad y=-b \quad y=b \quad z=z_{f} \quad z=z_{b}$
- these are simpler planes against which to clip
- this is equivalent to clipping in 2D with two extra clips for z


```
4 lines
+ polygons
- depth sort
- Binary Space-Partitioning tree
- z-buffer
A-buffer
+ lines
+ polygons
```


3D scan conversion

3D polygon drawing

- given a list of 3D polygons we draw them by:

Depth sort algorithm

(1) transform all polygon vertices into viewing co-ordinates and project these into 2D, keeping z information

- projecting vertices onto the 2 D screen
(2) calculate a depth ordering for polygons, based on the most distant z co-ordinate in each polygon
- using a 2D polygon scan conversion algorithm on the resulting 2D

3 resolve any ambiguities caused by polygons overlapping in z
(4) draw the polygons in depth order from back to front
"painter's algorithm": later polygons draw on top of earlier polygons

- steps (1) and (2) are simple, step 4 is 2D polygon scan conversion, step 3 requires more thought

Resolving ambiguities: algorithm

+ for the rearmost polygon, \boldsymbol{P}, in the list, need to compare each polygon, \boldsymbol{Q}, which overlaps \boldsymbol{P} in \mathbf{z}
the question is: can I draw \boldsymbol{P} before \boldsymbol{Q} ? - do the polygons y extents not overlap? (2) do the polygons x extents not overlap?
tests get
more (3) is \boldsymbol{P} entirely on the opposite side of Q 's plane from the viewpoint? $\left.{ }^{(}\right)$is Q entirely on the same side of P 's plane as the viewpoint?
- if all 4 tests fail, repeat (3) and (4) with \boldsymbol{P} and \boldsymbol{Q} swapped (i.e. can I draw \boldsymbol{Q} before \boldsymbol{P} ?), if true swap \boldsymbol{P} and \boldsymbol{Q}
- otherwise split either \boldsymbol{P} or \boldsymbol{Q} by the plane of the other, throw away the original polygon and insert the two pieces into the list
+ draw rearmost polygon once it has been completely checked
Split a polygon by a plane
\& remember the Sutherland-Hodgman algorithm
■ splits a 2D polygon against a 2D line
do the same in 3D: split a (planar) polygon by a plane
\& line segment defined by $\left(x_{s}, y_{s}, z_{s}\right)$ and $\left(x_{e}, y_{e}, z_{e}\right)$
clipping plane defined by $a x+b y+c z+d=0$

Depth sort: comments	166		
the depth sort algorithm produces a list of polygons which			
can be scan-converted in 2D, backmost to frontmost, to			
produce the correct image			
it is reasonably cheap for small number of polygons, but			
becomes expensive for large numbers of polygons		\quad	the ordering is only valid from one particular viewpoint
:---			

Back face culling: a time-saving trick

Binary Space-Partitioning trees

- if a polygon is a face of a closed polyhedron and faces backwards with respect to the viewpoint then it need not be drawn at all because front facing faces would later obscure it anyway

- BSP trees provide a way of quickly calculating the correct depth order:
- for a collection of static polygons
- from an arbitrary viewpoint
- the BSP tree trades off an initial time- and space-intensive preprocessing step against a linear display algorithm $(\boldsymbol{O}(N)$ which is executed whenever a new viewpoint is specified
- the BSP tree allows you to easily determine the correct order in which to draw polygons by traversing the tree in a simple way

Making a BSP tree

```
- given a set of polygons
```

- select an arbitrary polygon as the root of the tree
- divide all remaining polygons into two subsets:
$\%$ those in front of the selected polygon's plane
$\%$ those behind the selected polygon's plane

> any polygons through which the plane passes are split into two polygons and the two parts put into the appropriate subsets

- make two BSP trees, one from each of the two subsets
these become the front and back subtrees of the root
- may be advisable to make, say, 20 trees with different random roots to be sure of getting a tree that is reasonably well balanced

You need to be able to tell which side of an arbitrary plane a vertex lies on and how to split a polygon by an arbitrary plane - both of which were discussed for the depth-sort algorithm.

Drawing a BSP tree

- if the viewpoint is in front of the root's polygon's plane then:
- draw the BSP tree for the back child of the root
- draw the root's polygon
- draw the BSP tree for the front child of the root
otherwise:
- draw the BSP tree for the front child of the root
- draw the root's polygon
- draw the BSP tree for the back child of the root

Scan-line algorithms

- instead of drawing one polygon at a time:
modify the 2D polygon scan-conversion algorithm to handle all of the polygons at once
- the algorithm keeps a list of the active edges in all polygons and proceeds one scan-line at a time
- there is thus one large active edge list and one (even larger) edge list
enormous memory requirements
- still fill in pixels between adjacent pairs of edges on the scan-line but:
- need to be intelligent about which polygon is in front
and therefore what colours to put in the pixels
- every edge is used in two pairs:
one to the left and one to the right of it

z-buffer polygon scan conversion

+ depth sort \& BSP-tree methods involve clever sorting algorithms followed by the invocation of the standard 2D polygon scan conversion algorithm
+ by modifying the 2 D scan conversion algorithm we can remove the need to sort the polygons
- makes hardware implementation easier
- this is the algorithm used on graphics cards

z-buffer basics

+ store both colour and depth at each pixel
+ scan convert one polygon at a time in any order
+ when scan converting a polygon:
- calculate the polygon's depth at each pixel
- if the polygon is closer than the current depth stored at that pixe
- then store both the polygon's colour and depth at that pixel
- otherwise do nothing

Comparison of methods
Algorithm Complexity Notes Depth sort $O(N \log N)$ Need to resolve ambiguities Scan line $O(N \log N)$ Memory intensive BSP tree $O(N)$ $O(N$ log $N)$ pre-processing step z-buffer $O(N)$ Easy to implement in hardware BSP is only useful for scenes which do not change as number of polygons increases, average size of polygon decreases, so time to draw a single polygon decreases z-buffer easy to implement in hardware: simply give it polygons in any order you like other algorithms need to know about all the polygons before drawing a single one, so that they can sort them into order

```
Putting it all together - a summary
+ a 3D polygon scan conversion algorithm needs to include:
- a 2D polygon scan conversion algorithm
- 2D or 3D polygon clipping
- projection from 3D to 2D
- either:
- ordering the polygons so that they are drawn in the correct order or:
- calculating the \(z\) value at each pixel and using a depth-buffer
```


Putting it all together - a summary

all of the methods so far tak sample for each pixel at the precise centre of the pixel

- i.e. the value for each pixel is the colour of the polygon which happens to lie exactly under the centre of the pixel
this leads to:
- stair step (jagged) edges to polygons
- small polygons being missed completely
- thin polygons being missed completely or split into small pieces

Sampling

Anti-aliasing

these artefacts (and others) are jointly known as aliasing
methods of ameliorating the effects of aliasing are known as anti-aliasing

- in signal processing aliasing is a precisely defined technical term for a particular kind of artefact
- in computer graphics its meaning has expanded to include most undesirable effects that can occur in the image
this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also ameliorate most of the other artefacts

Making the A-buffer more efficient

- if a polygon totally covers a pixel then:
- do not need to calculate a mask, because the mask is all Is
- all masks currently in the list which are behind this polygon can be discarded
- any subsequent polygons which are behind this polygon can be immediately discounted (without calculating a mask)
- in most scenes, therefore, the majority of pixels will have only a single entry in their list of masks
- the polygon scan-conversion algorithm can be structured so that it is immediately obvious whether a pixel is totally or partially within a polygon

Light: wavelengths \& spectra

+ light is electromagnetic radiation
- visible light is a tiny part of the electromagnetic spectrum
- visible light ranges in wavelength from 700 nm (red end of spectrum) to 400 nm (violet end)
+ every light has a spectrum of wavelengths that it emits
+ every object has a spectrum of wavelengths that it reflects (or transmits)
+ the combination of the two gives the spectrum of wavelengths that arrive at the eye

Chromatic metamerism ```\(\star\) many different spectra will induce the same response in our cones - the values of the three perceived values can be calculated as: \(1=\mathrm{k} \int \mathrm{P}(\lambda) \mathrm{l}(\lambda) \mathrm{d} \lambda\) \(\mathrm{m}=\mathrm{k} \int \mathrm{P}(\lambda) \mathrm{m}(\lambda) \mathrm{d} \lambda\) \(\mathrm{s}=\mathrm{k} \int \mathrm{P}(\lambda) \mathrm{s}(\lambda) \mathrm{d} \lambda\) - k is some constant, \(\mathrm{P}(\lambda)\) is the spectrum of the light incident on the retina \(=\) two different spectra (e.g. \(P_{1}(\lambda)\) and \(P_{2}(\lambda)\)) can give the same values of \(\mathrm{l}, \mathrm{m}, \mathrm{s}\) - we can thus fool the eye into seeing (almost) any colour by mixing correct proportions of some small number of lights```

Colour spaces

- CIE XYZ, Yxy
- Uniform
- equal steps in any direction make equal perceptual differences

■ CIE $L^{*} u^{*} \nu^{*}$, CIE $L^{*} a^{*} b^{*}$

- Pragmatic
- used because they relate directly to the way that the hardware works
- RGB, CMY, CMYK
- Munsell-like
- used in user-interfaces
- considered to be easier to use for specifying colour than are the pragmatic
colour spaces
- map easily to the pragmatic colour spaces
- HSV, HLS
$X Y Z$ is not perceptually uniform

RGB in XYZ space

+ CRTs and LCDs mix red, green, and blue to make all other colours
+ the red, green, and blue primaries each map to a point in $X Y Z$ space
+ any colour within the resulting triangle can be displayed
- any colour outside the triangle
cannot be displayed
- for example: CRTs cannot display very saturated purple, turquoise, or yellow

Colour spaces for user-interfaces

$+R G B$ and CMY are based on the physical devices which produce the coloured output
$+R G B$ and $C M Y$ are difficult for humans to use for selecting colours

+ Munsell's colour system is much more intuitive:
- hue - what is the principal colour?
- value - how light or dark is it?
- chroma - how vivid or dull is it?
+ computer interface designers have developed basic transformations of $R G B$ which resemble Munsell's human-friendly system

Summary of colour spaces

- the eye has three types of colour receptor
- therefore we can validly use a three-dimensional
co-ordinate system to represent colour
- XYZ is one such co-ordinate system
$\square Y$ is the eye's response to intensity (luminance)
$\square X$ and Z are, therefore, the colour co-ordinates
same Y, change X or $Z \Rightarrow$ same intensity, different colour
same X and Z, change $Y \Rightarrow$ same colour, different intensity
- there are other co-ordinate systems with a luminance axis - $L^{*} a^{*} b^{*}, L^{*} u^{*} v^{*}, H S V, H L S$
- some other systems use three colour co-ordinates
- RGB, CMY
- luminance can then be derived as some function of the three
e.g. in $R G B: Y=0.299 R+0.587 G+0.114 B$

Illumination \& shading

- until now we have assumed that each polygon is a uniform colour and have not thought about how that colour is determined
*things look more realistic if there is some sort of illumination in the scene
- we therefore need a mechanism of determining the colour of a polygon based on its surface properties and the positions of the lights
* we will, as a consequence, need to find ways to shade polygons which do not have a uniform colour

BRDF

+ Bidirectional Reflectance
Distribution Function
- $\rho\left(\theta_{i}, \phi_{i} ; \theta_{o}, \phi_{o}\right)$

Capturing an anisotropic BRDF

Equations for lighting

+ Rather than using a BRDF look-up table, we might prefer a simple equation
- This is a trade-off that has occurred often in the history of computing
- Early years: memory is expensive, so use a calculated approximation to the truth
- More recently: memory is cheap, so use a large look-up table captured from the real world to give an accurate answer
- Examples include: surface properties in graphics, sounds for electric pianos/organs, definitions of 3D shape

Comments on reflection

plastics are good examples of surfaces with:

- specular reflection in the light's colou
- diffuse reflection in the plastic's colour

Calculating the shading of a polygon
gross assumptions:

- there is only diffuse (Lambertian) reflection
- all light falling on a polygon comes directly from a light source
there is no interaction between polygons
- no polygon casts shadows on any other
so can treat each polygon as if it were the only polygon in the scene
- light sources are considered to be infinitely distant from the polygon the vector to the light is the same across the whole polygon
- observation:
- the colour of a flat polygon will be uniform across its surface, dependent only on the colour \& position of the polygon and the colour \& position of the light sources

Diffuse shading calculation

L is a normalised vector pointing in the direction of the light source
N is the normal to the polygon
I_{l} is the intensity of the light source
k_{d} is the proportion of light which is diffusely reflected by the surface
I is the intensity of the light reflected by the surface
use this equation to set the colour of the whole polygon and draw the polygon using a standard polygon scan-conversion routine

Diffuse shading: comments

- can have different $\boldsymbol{I}_{\boldsymbol{I}}$ and different $\boldsymbol{k}_{\boldsymbol{d}}$ for different wavelengths (colours)
- watch out for $\cos \theta<0$
- implies that the light is behind the polygon and so it cannot illuminate this side of the polygon
- do you use one-sided or two-sided polygons?
- one sided: only the side in the direction of the normal vector can be illuminated
if $\cos \theta<0$ then both sides are black
two sided: the sign of $\cos \theta$ determines which side of the polygon is
illuminated
need to invert the sign of the intensity for the back side
- this is essentially a simple one-parameter (θ) BRDF

Gouraud shading

for a polygonal model, calculate the diffuse illumination at each vertex rather than for each polygon

- calculate the normal at the vertex, and use this to calculate the diffuse illumination at that point
- normal can be calculated directly if the polygonal model was derived from a curved surface
- interpolate the colour across the polygon, in a similar manner to that used to interpolate \mathbf{z}
- surface will look smoothly curved
- rather than looking like a set of polygons
- surface outline will still look polygonal

Henri Gouraud, "Continuous Shading of Curved Surfaces", IEEE Trans Computers, 20(6), 1971

Specular reflection

Phong shading

* similar to Gouraud shading, but calculate the specular component
in addition to the diffuse component
* therefore need to interpolate the normal across the polygon in
order to be able to calculate the reflection vector
N.B. Phong's approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence
Examples

The gross assumptions revisited

- only diffuse reflection
- now have a method of approximating specular reflection
- no shadows
- need to do ray tracing or shadow mapping to get shadows
- lights at infinity
- can add local lights at the expense of more calculation
need to interpolate the L vector
- no interaction between surfaces
- cheat!
assume that all light reflected off all other surfaces onto a given polygon can be amalgamated into a single constant term: "ambient illumination", add this onto the diffuse and specular illumination

Illumination \& shading: comments

- how good is this shading equation?
- gives reasonable results but most objects tend to look as if they are made out of plastic
- Cook \& Torrance have developed a more realistic (and more expensive)
shading model which takes into account:
micro-facet geometry (which models, amongst other things, the
roughness of the surface)
Fresnel's formulas for reflectance off a surface
- there are other, even more complex, models
- is there a better way to handle inter-object interaction?
- "ambient illumination" is a gross approximation
- distributed ray tracing can handle specular inter-reflection
- radiosity can handle diffuse inter-reflection

Sampling texture space: finding the value ${ }^{254}$

Nearest neighbour: the sample value is the nearest pixel value to the sample point.

Bi-linear: the sample value is the weighted mean of the four pixels around the sample point.

What can a texture map modify?

+ any (or all) of the colour components
- ambient, diffuse, specular
+ transparency
- "transparency mapping"
+ reflectiveness
+ but also the surface normal
- "bump mapping"

+ the surface normal is used in calculating both diffuse and specular reflection
+ bump mapping modifies the direction of the surface normal so that the surface appears more or less bumpy
+ rather than using a texture map, a 2D function can be used which varies the surface normal smoothly across the plane
+ but bump mapping doesn't change the object's outline

Background
+ what is a digital image?
+ how does human vision work?
\& what hardware do we use?
\& how do we represent colour?
+ how do displays \& printers work?
\& how do we fool the human eye into seeing what we want it
to see?

Liquid crystal displays I

- liquid crystals can twist the polarisation of light
- basic control is by the voltage that is applied across the liquid crystal: either on or off, transparent or opaque
- greyscale can be achieved with some types of liquid crystal by varying the voltage
- colour is achieved with colour filters

Liquid crystal displays III

low power consumption compared to CRTs although the back light uses a lot of power

- image quality historically not as good as cathode ray tubes,
but improved dramatically over the last ten years
uses
- laptops
- video projectors
- rapidly replacing CRTs as desk top displays
- increasing use as televisions

Electrophoretic displays II

+ transparent capsules $\sim 40 \mu$ diameter
- filled with dark oil
- negatively charged $I \mu$ titanium dioxide particles
+ electrodes in substrate attract or repel white particles
+ image persists with no power consumption

| \quad Printer resolution |
| :---: | :---: |
| + laser printer |
| $*$ 300-1200dpi |
| + ink jet |
| \quad used to be lower resolution \& quality than laser printers |
| but now have comparable resolution |

What about colour?

+ generally use cyan, magenta, yellow, and black inks (CMYK)
+ inks aborb colour
- c.f. lights which emit colour
- CMY is the inverse of RGB
+ why is black (K) necessary?
\bullet inks are not perfect aborbers
- mixing $C+M+Y$ gives a muddy grey, not black
- lots of text is printed in black: trying to align C, M and Y perfectly for black text would be a nightmare
\qquad

How do you produce halftoned colour? - print four halftone screens, one in each colour - carefully angle the screens to prevent interference (moiré) patterns	
$150 \mathrm{lpi} \times 16$ dots per cell $=2400$ dpi phototypesetter (16×16 dots per cell $=256$ intensity levels)	Standard rulings (in lines per inch) 65 Ip 85 lpi newsprint 100 lpi uncoated offset paper 102 lpi unco 133 lpi uncoated offset paper 150 lpi matt coated offset paper or art paper publication: books, advertising leaflets 200 lpi very smooth, expensive paper very high quality publication

Point processing

+ each pixel's value is modified
t the modification function only takes that pixel's value
into account

$$
p^{\prime}(i, j)=f\{p(i, j)\}
$$

\quad| \& where $p(i, j)$ is the value of the pixel and $p^{\prime}(i, j)$ is the |
| :--- |
| modified value |
| \& the modification function, $f(p)$, can perform any operation |
| that maps one intensity value to another |

| | Point processing
 inverting an image | 290 |
| :---: | :---: | :---: | :---: |

Differencing - an example

take the difference between the two images $d=\mid a-b$ where $1=$ white and $0=$ black
black $=$ no difference white $=$ large difference

Filtering

+ move a filter over the image, calculating a new value for every pixel

Filters - discrete convolution

+ convolve a discrete filter with the image to produce a new image
$\stackrel{\text { in }}{ }$ one dimension:

$$
\begin{aligned}
& f^{\prime}(x)= \sum_{i=-\infty}^{+\infty} h(i) \times f(x-i) \\
& \quad \text { where } h(i) \text { is the filter }
\end{aligned}
$$

- in two dimensions:

$$
f^{\prime}(x, y)=\sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} h(i, j) \times f(x-i, y-j)
$$

\qquad

Filtering based on global image properties

Photoshop "Auto Colour" adjustment

Halftoning \& dithering

+ mainly used to convert greyscale to binary
- e.g. printing greyscale pictures on a laser printer
-8-bit to I-bit
+ is also used in colour printing, normally with four colours:
- cyan, magenta, yellow, black

Halftoning dither matrix

tone possible set of patterns for the 3×3 case is:

+ these patterns can be represented by the dither matrix:

- 1-to-9 pixel mapping

Rules for halftone pattern design

- mustn't introduce visual artefacts in areas of constant intensity
- e.g. this won't work very well: $\square \square$
- every on pixel in intensity level j must also be on in levels $>j$ - i.e. on pixels form a growth sequence
- pattern must grow outward from the centre
- simulates a dot getting bigger
- all on pixels must be connected to one another
- this is essential for printing, as isolated on pixels will not print very well (if at all)

Ordered dither

- halftone prints and photocopies well, at the expense of large dots
- an ordered dither matrix produces a nicer visual result than a halftone dither matrix

Exercise: phototypesetters may use halfone cells up to size 16×16, with 256 entries; exercise. phototypesetters may use halrix for a cell that large or, better, an algorithm to generate an appropriate halftone dither matrix

Error diffusion

+ error diffusion gives a more pleasing visual result than ordered dither
+ method:
- work left to right, top to bottom
- map each pixel to the closest quantised value
- pass the quantisation error on to the pixels to the right and below, and add in the errors before quantising these pixels

