
1

Compiler Construction
Lent Term 2014

Lecture 8 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  The heap and garbage

collection
–  Reference counting
–  Mark and sweep
–  Copy collection
–  Generational collection

Read related chapter of Appel

2

Memory Management

•  Modern programming languages allow
programmers to allocate new storage
dynamically
– New records, arrays, tuples, objects, closures,

etc.
•  Memory could easily be exhausted without some

method of reclaiming and recycling the storage
that will no longer be used.
– Let programmer worry about it (use malloc

and free in C…)
– Automatic “garbage collection”

3

Solutions

•  Let programmer worry about it (use malloc and
free in C…)

•  Automatic “garbage collection”
–  Reference Counting
–  Mark and Sweep
–  Copy Collection
–  Generational Collection
– … there are other GC techniques…

In general, we must approximate since
determining exactly what objects will never be used again
is not decidable.

4

Explicit Memory Management

•  User library manages memory; programmer
decides when and where to allocate and de-
allocate
–  void* malloc(long n)
–  void free(void *addr)
–  Library calls OS for more pages when necessary
–  Advantage: Gives programmer a lot of control.
–  Disadvantage: people too clever and make mistakes.

Getting it right can be costly. And don’t we want to
automate-away tedium?

–  Advantage: With these procedures we can implement
garbage collection for “higher level” languages ;-)

5

Automatic Memory Management

Virtual Machine

Implementation

includes garbage
collector

Generated
 code

Generated
 code

Run-time system,
Including garbage
Collector

Linker

Executable

•  When to invoke collection?

–  When out of memory?
–  When allocating new

space?
– …

6

Automation is based on an approximation : if data can be
reached from a root set, then it is not “garbage”

r1

stack

r2
registers

ROOT SET
-------------------- HEAP --

Type information required (pointer or not),
some kind of “tagging” needed.

7

… Identify Cells Reachable From Root Set…

r1

stack

r2
registers

8

… reclaim unreachable cells

r1

stack

r2
registers

9

But How? Two basic techniques,
and many variations

•  Reference counting : Keep a reference count
with each object that represents the number of
pointers to it. Is garbage when count is 0.

•  Tracing : find all objects reachable from root set.
Basically transitive close of pointer graph.

For a very interesting (non-examinable) treatment of this subject see

 A Unified Theory of Garbage Collection.
 David F. Bacon, Perry Cheng, V.T. Rajan.
 OOPSLA 2004.

In that paper reference counting and tracing are presented as “dual”
approaches, and other techniques are hybrids of the two.

10

Reference Counting, basic idea:

•  Keep track of the number of pointers to each object (the reference
count).

•  When Object is created, set count to 1.
•  Every time a new pointer to the object is created, increment the

count.
•  Every time an existing pointer to an object is destroyed, decrement

the count
•  When the reference count goes to 0, the object is unreachable

garbage

Clearly --- this can be VERY costly….

11

Reference counting can’t detect cycles!

r1

stack
r2

•  Cons
•  Space/time overhead to maintain count.
•  Memory leakage when cycles in data.

•  Pros
•  Incremental (no long pauses to collect…)

12

Mark and Sweep

•  A two-phase algorithm
– Mark phase: Depth first traversal of object

graph from the roots to mark live data
– Sweep phase: iterate over entire heap,

adding the unmarked data back onto the free
list

13

Cost of Mark Sweep (somewhat crude)

•  Cost of mark phase:
–  O(R) where R is the # of reachable words
–  Assume cost is c1 * R (c1 may be 10 instr’s)

•  Cost of sweep phase:
–  O(H) where H is the # of words in entire heap
–  Assume cost is c2 * H (c2 may be 3 instr’s)

•  Analysis
–  The “good” = each collection returns H - R words reclaimed
–  Amortized cost = time-collecting/amount-reclaimed

•  ((c1 * R) + (c2 * H)) / (H - R)
•  If R is close to H, then each collection reclaims little space..

–  R / H must be sufficiently small or GC cost is high.
 Could dynamically adjust. Say, if R / H is larger than .5, increase

heap size

14

Other Problems

•  Depth-first search is usually implemented as a
recursive algorithm
–  Uses stack space proportional to the longest path in

the graph of reachable objects
•  one activation record/node in the path
•  activation records are big

–  If the heap is one long linked list, the stack space
used in the algorithm will be greater than the heap
size!!

–  What do we do? Pointer reversal [See Appel]
•  Fragmentation

15

Copying Collection

•  Basic idea: use 2 heaps
–  One used by program
–  The other unused until GC time

•  GC:
–  Start at the roots & traverse the reachable data
–  Copy reachable data from the active heap (from-

space) to the other heap (to-space)
–  Dead objects are left behind in from space
–  Heaps switch roles

16

Copying Collection

to-space from-space

roots

17

Copying GC

•  Pros
–  Simple & collects cycles
–  Run-time proportional to # live objects
–  Automatic compaction eliminates fragmentation

•  Cons
–  Twice as much memory used as program requires

•  Usually, we anticipate live data will only be a small fragment
of store

•  Allocate until 70% full
•  From-space = 70% heap; to-space = 30%

–  Long GC pauses = bad for interactive, real-time apps

18

OBSERVATION: for a copying garbage
collector

•  80% to 98% new objects die very quickly.
•  An object that has survived several collections has a bigger

chance to become a long-lived one.
•  It’s a inefficient that long-lived objects be copied over and over.

19

IDEA: Generational garbage collection

Segregate objects into multiple areas
by age, and collect areas containing
older objects less often than the
younger ones.

20

Other issues…

–  When do we promote objects from young generation to

old generation
•  Usually after an object survives a collection, it will be

promoted
–  Need to keep track of older objects pointing to newer

ones!
–  How big should the generations be?

•  Appel says each should be exponentially larger than the last
–  When do we collect the old generation?

•  After several minor collections, we do a major collection
–  Sometimes different GC algorithms are used for the new

and older generations.
•  Why? Because the have different characteristics
•  Copying collection for the new

–  Less than 10% of the new data is usually live
–  Copying collection cost is proportional to the live data

•  Mark-sweep for the old

