
1

Compiler Construction
Lent Term 2014

Lecture 5

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  Block structure, simple functions
•  The call stack, stack frames
•  Caller and Callee
•  A simple stack-oriented VM model
•  Nested functions and possible

modifications required

Caller and Callee

!
fun f (x, y) = e1 !
!
… !
!
fun g(w, v) = !
 w + f(v, v) !
!

For this invocation of
the function f, we say
that g is the caller
while f is the callee

Recursive functions can play
both roles at the same time …

A word about “dynamic binding” --- IT IS A VERY BAD IDEA

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = g(x) + 1 !
in !
 h(17) !
end !

With good old static
binding we get 19.

With insane dynamic
binding we get 35.

But might there be a place for dynamic binding?
Is there dynamic binding of some kind behind
the raise/handle exception mechanism?

4

Mind the gap. Block Structure

{ x : int; !
 y : bool; !
 …. !
 if (e1) { !
 z :int = x + y; !
 w :string = “hello”; !
 if (e2) { !
 u : int = size (w); !
 v : int = u + z + x; !
!
 … visible : x y z w u v !
 } !
!
 … visible: x y z w !
 } !
!
 … visible: x y !
} !
visible: !

We need to implement
this in a world with one
large “flat” scope.

How do we allocate
space for the values
associated with the
variables, and how do
we find these
values at run-time?

5

Block Structure (2)

{ x : int; !
 y : bool; !
 …. !
 if (e1) { !
 z :int = x + y; !
 y :string = “hello”; !
 if (e2) { !
 u : int = size (y); !
 v : int = u + z + x; !
!
 … visible : x z y u v !
 } !
!
 … visible: x z y !
 } !
!
 … visible: x y !
} !
visible: !

And we must
Correctly implement
Name binding rules.

6

Smells like LIFO, so use a stack

B4

B3

B2

B1

….

….

….

….

….

Execution

B1

Possible run-time “activations”
of these blocks

B1
B2

B3

B1
B2

B1
B4
B1

B1 B1
B4

7

Same for calls to functions/procedures

!
let fun f (x) = x + 1 !
 fun g(y) = f(y+2)+2 !
 fun h(w) = g(w+1)+3 !
in !
 h(h(17)) !
end !

h ! h !
g !

h !
g !

f !

h !

g !

h ! h ! h !
g !

h !
g !

f !

h !

g !

h !

Execution

The run-time data structure is
the call stack containing an
activation record for each function
invocation.

8

Structure of Our Simple VSM Call Stack

stack sp
pointer

Stack[fp] contains
the fp of the
caller’s frame

 FP
 RA

Stack[fp + 1] contains
return address (RA)

Optional reserved space
Stack[fp + 2] to Stack[fp + k]
(perhaps for values of local variables)

Stack[sp] = next available slot at
 top of stack

Callee stack frame
(activation record)

Caller stack frame
(activation record)

Stack[fp - 1] to Stack[fp - n]
are arguments passed by caller

fp frame pointer

9

We can now design “high level” VSM commands

call f

cp

Code

FREE sp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE
j+1

caller’s
 frame

This is a VM-level
abstraction. At the level
of the program
implementing the VM
call is implemented
with many instructions.

If we are targeting an
OS/ISA pair (Unix/x86, …),
then there are many more
options as to who (caller or
callee) does what when and
where (registers or stack).
This is captured in a
Calling Convention.

10

Our “high level” VSM return

return n

cp
Code

sp

fp

return n

ra : ……..

FREE

 ra

return value

cp

Code

sp

fp

return n

ra : ……..

FREE
return value

 n args

Access to argument values

arg j sp

fp

FREE

 ra

sp

fp

FREE

 ra

V

V fp - j

12

Translation of (call-by-value) functions

 f(e_1, …, e_n)

code for e_1

call k

code for e_n

: :

This will leave the values
of each arg on the stack,
with the value of e_n at
the top. Here k is the
address for the start of
the code for f.

fun f(x_1, …, x_n) = e

return n

code for e
k :

k is a location (address)
where code for
function f starts.

In code for e, access to
variable x_i is translated
to arg ((n – i) + 1).

13

What if we allow nested functions?

How will the code
generated from
e1 find the value
of x? fun g(x) =

 fun h(y) = e1
 in e2 end
…
g(17)
…

 17

 g’s
 stack
 frame

 : :
 : :
 : :

an h stack
frame from
call to h
in e2

14

Approach 1: Lambda Lifting

 fun g(x) =
 fun h(y) = e1
 in e2 end
…
g(17)
…

fun h(y, x) = e1

fun g(x) = e3
…
g(17)
…

Construct e3 from e2 by replacing
each call h(e) with h(e, x)

(+) Keeps our VM simple
(+) Low variable access cost
(-) can duplicate many arg values on the stack

Local blocks …

 let x = e1 in e2 end

 (fn x => e2) e1

 fun f(x) = e2 in f(e1) end

f is a fresh name

OR

… can give rise to nested functions

 fun g(x, y) =
 let z = e1(x, y)
 in e2(x, y, z) end

 fun g(x,y) =
 fun f(z) = e2(x, y, z)
 in f(e1(x, y)) end

f is a fresh name

17

Approach 2 : add Static Links to call stack

 sp

 FP
 RA

Callee at nesting
depth k +1

Caller stack frame

fp

 SL

The static link points
down to the closest
frame of at nesting
depth k

(+) takes less time to set up

(-) At run-time, need to
“chase pointers” to find
the value of a non-local
variable. In the worst case
a variable access at nesting
depth j has to “chase” j static
links to find the outer-most
stack frame.

An exercise for you (to be resolved next lecture)

 f(e_1, …, e_n)

fun f(x_1, …, x_n) = e

•  What changes do static links require
for the commands of our VSM?

•  How do we change the compilation
of these expressions?

19

Approach 3: Dijkstra Displays

 x

 : :

 : :

f

f

g

 : :

h
fun f(x) {

 fun h(y) {

 fun g(w) {

 e1
 }
 e2
 }
 e3
}

Depth 0

Depth 1

Depth 2

F[0]

(+) at run-time
only need a fixed
number of indirections
to find the value of a
non-local variable

(-) maintaining display

h

F[2]

F[1]

Where to store F?

How is it managed?

Use an array
F[d] to point at
the most recent
activation record
at nesting
depth d.

20

A Classic Trade Off

Lower Call-time set up cost
(on a stack-oriented machine)

Lower run-time
cost of variable
access

Displays

Static Pointer
Chains

Where we want
to be …

lambda
lifting

