## Compiler Construction Lent Term 2014 <br> Lectures 11---14 (of 16)

1. Return to lexical analysis: application of Theory of Regular Languages and Finite Automata
2. Generating Recursive descent parsers
3. Beyond Recursive Descent Parsing I
4. Beyond Recursive Descent Parsing II

> Timothy G. Griffin tgg22@cam.ac.uk Computer Laboratory University of Cambridge

## Generating Lexical Analyzers



The idea : use regular expressions as the basis of a lexical specification. The core of the lexical analyzer is then a deterministic finite automata (DFA)

## Recall from Regular Languages and Finite Automata (Part 1A)

## Regular expressions over an alphabet $\Sigma$

- each symbol $a \in \Sigma$ is a regular expression
- $\varepsilon$ is a regular expression
- $\emptyset$ is a regular expression
- if $r$ and $s$ are regular expressions, then so is $(r \mid s)$
- if $r$ and $s$ are regular expressions, then so is $r s$
- if $r$ is a regular expression, then so is $(r)^{*}$

Every regular expression is built up inductively, by finitely many applications of the above rules.
(N.B. we assume $\varepsilon, \emptyset,(),, \mid$, and * are not symbols in $\Sigma$.)

## Traditional Regular Language Problem

Given a regular expression,

$$
e
$$

and an input string $w$, determine if $w \in L(e)$

One method: Construct a DFA M from $e$ and test if it accepts $w$.

## Something closer to the "lexing problem"

Given an ordered list of regular expressions,

$$
e_{1} \quad e_{2} \quad \cdots \quad e_{k}
$$

and an input string $w$ find a list of pairs

$$
\left(i_{1}, w_{1}\right),\left(i_{2}, w_{2}\right), \ldots\left(i_{n}, w_{n}\right)
$$

such that

1) $w=w_{1} w_{2} \ldots w_{n}$
2) $w_{j} \in L\left(e_{i_{j}}\right)$
3) $w_{j} \in L\left(e_{s}\right) \rightarrow i_{j} \leq s \quad$ (priority rule)
4) $\forall j: \forall u \in \operatorname{prefix}\left(w_{j+1} w_{j+2} \cdots w_{n}\right): u \neq \varepsilon$ $\rightarrow \forall s: w_{j} u \notin L\left(e_{s}\right) \quad$ (longest match)

## Define Tokens with Regular Expressions (Finite Automata)

## Keyword: if



This FA is really shorthand for:


## Define Tokens with Regular Expressions (Finite Automata)

Regular Expression

| Keyword: |
| :--- |
| if |


| Keyword: |
| :--- |
| then |
| Identifier: |
| [a-zA-Z][a-zA-Z0-9]* |

## Define Tokens with Regular Expressions (Finite Automata)



## No Tokens for "White-Space"



## Constructing a Lexer

INPUT: an ordered list of regular expressions


Construct all corresponding finite automata $\mathrm{NFA}_{1}$
$\mathrm{NFA}_{2}$
$\vdots$

$e_{k}$
NFA $_{k}$
(1) Keyword : then
(2) Ident: [a-z][a-z]*
(2) White-space: ‘ ‘

Construct a single non-deterministic finite automata

Construct a single deterministic finite automata


## What about longest match?

Start in initial state, Repeat:
(1) read input until dead state is reached. Emit token associated with last accepting state.
(2) reset state to start state



## Predictive (Recursive Descent) Parsing Can we automate this?

```
int tok = getToken();
void advance() {tok = getToken();}
void eat (int t) {if (tok == t) advance(); else error();}
void S() {switch(tok) {
    case IF: eat(IF); E(); eat(THEN);
            S(); eat(ELSE); S(); break;
    case BEGIN: eat(BEGIN); S(); L(); break;
    case PRINT: eat(PRINT); E(); break;
    default: error();
    }}
void L() {switch(tok) {
        case END: eat(END); break;
        case SEMI: eat(SEMI); S(); L(); break;
        default: error();
    }}
void E() {eat(NUM) ; eat(EQ); eat(NUM); }
Parse corresponds to a left-most derivation constructed in a "top-down" manner

\section*{Eliminate Left-Recursion}

Immediate left-recursion
\[
\begin{aligned}
A::= & A \alpha 1|A \alpha 2| \ldots|A \alpha k| \\
& \beta 1|\beta 2| \ldots \mid \beta n
\end{aligned}
\]

\[
A::=\beta 1 A^{\prime}\left|\beta 2 A^{\prime}\right| \ldots \mid \beta n A^{\prime}
\]
\(A^{\prime}::=\alpha 1 A^{\prime}\left|\alpha 2 A^{\prime}\right| \ldots\left|\alpha k A^{\prime}\right| \varepsilon\)


For eliminating left-recursion in general, see Aho and Ullman. \({ }^{13}\)

\section*{Eliminating Left Recursion}


\section*{FIRST and FOLLOW}

For each non-terminal X we need to compute
\[
\begin{aligned}
\text { FIRST }[\mathrm{X}]= & \text { the set of terminal symbols that } \\
& \text { can begin strings derived from } \mathrm{X} \\
\text { FOLLOW }[\mathrm{X}]= & \text { the set of terminal symbols that } \\
& \text { can immediately follow } \mathrm{X} \text { in some } \\
& \text { derivation } \\
& \text { nullable }[\mathrm{X}]= \\
& \text { true of } \mathrm{X} \text { can derive the empty string, } \\
& \text { false otherwise }
\end{aligned}
\]
```

nullable[Z] = false, for Z in T
nullable[Y1 Y2 ... Yk] = nullable[Y1] and ... nullable[Yk], for Y(i) in N union T.

```
```

FIRST[Z] = {Z}, for Z in T
FIRST[ X Y1 Y2 ... Yk] = FIRST[X] if not nullable[X]
FIRST[ X Y1 Y2 ... Yk] =FIRST[X] union FIRST[Y1 ... Yk] otherwise

```

\section*{Computing First, Follow, and nullable}
```

For each terminal symbol Z
FIRST[Z] := {Z};
nullable[Z] := false;
For each non-terminal symbol X
FIRST[X] := FOLLOW[X] := {};
nullable[X] := false;
repeat
for each production X }->\mathrm{ Y1 Y2 ... Yk
if Y1, .. Yk are all nullable, or k=0
then nullable[X] := true
for each i from 1 to k, each j from i + I to k
if Y1 .. Y(i-1) are all nullable or i=1
then FIRST[X] := FIRST[X] union FIRST[Y(i)]
if Y(i+1) .. Yk are all nullable or if i=k
then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]
if Y(i+1) .. Y(j-1) are all nullable or i+1 = j
then FOLLOW[Y(i)]:= FOLLOW[Y(i)] union FIRST[Y(j)]
until there is no change

```

\section*{First, Follow, nullable table for G6}
\begin{tabular}{|c|c|c|c|c|}
\hline & Nullable & FIRST & FOLLOW & \[
\begin{aligned}
& \text { (G6) } \\
& S::=E \$
\end{aligned}
\] \\
\hline S & False & \{ (, ID, NUM \} & \{\} & \\
\hline E & False & \{ (, ID, NUM \} & \{), \$ \} & - T E' \\
\hline E' & True & \(\{+,-\}\) & \{), \$ \} & T : \(:=\mathrm{F}\) T \({ }^{\prime}\) \\
\hline T & False & \{ (, ID, NUM \} & \{ ), +, -, \$ \} & \(\mathrm{T}^{\prime}::=\) * \(\mathrm{F} \mathrm{T}^{\prime}\) \\
\hline T' & True & \(\{*, 1\}\) & \{ ), +, -, \$ \} & \[
\mid / F T
\] \\
\hline F & False & \{ (, ID, NUM \} & \{ ), *,, + +, -, \$ \} & F : \(:=\) NUM \\
\hline
\end{tabular}

\section*{Predictive Parsing Table for G6}

Table[ \(\mathrm{X}, \mathrm{T}]=\) Set of productions
\[
\begin{aligned}
X::= & \mathrm{Y} 1 \ldots \mathrm{Yk} \text { in Table }[\mathrm{X}, \mathrm{~T}] \\
& \text { if } \mathrm{T} \text { in FIRST[Y1 } \ldots \mathrm{Yk}] \\
& \text { or if (T in FOLLOW[X] and nullable[Y1 ... Yk]) }
\end{aligned}
\]

\section*{NOTE: this could} lead to more than one entry! If so, out of luck --- can' t do recursive descent parsing!
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & + & * & ( & ) & ID & NUM & \$ \\
\hline S & & & S : : = E\$ & & S : : = E\$ & S ::= E\$ & \\
\hline E & & & E : \(=\) T E' & & E : \(:=\) T E' & E : : = T E' & \\
\hline E' & \(E^{\prime}::=+\) T E' & & & \(\mathrm{E}^{\prime}::=\) & & & E' :: \(=\) \\
\hline T & & & T : \(:=\mathrm{F} \mathrm{T}{ }^{\prime}\) & & T : \(=\) F T \({ }^{\prime}\) & T : : = F T' & \\
\hline T' & \(\mathrm{T}^{\prime}\) : : \(=\) & \(\mathrm{T}^{\prime}::=\) * \(\mathrm{F} \mathrm{T}^{\prime}\) & & T' ::= & & & T' : \(=\) \\
\hline F & & & \(F::=(E)\) & & F :: \(=\) ID & F :: = NUM & \\
\hline
\end{tabular}
(entries for /, - are similar...)

\section*{Left-most derivation is constructed by recursive descent}


Left-most derivation
\[
\begin{aligned}
& S \rightarrow E \$ \\
& \rightarrow \text { TE' } \$ \\
& \rightarrow \text { F T' E' } \$ \\
& \rightarrow \text { ( } \mathrm{E}) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow \text { (TE') T' E' \$ } \\
& \rightarrow\left(F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(17 \text { T' }^{\prime} \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17 \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+T E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(17+F T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(17+4 T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(17+4 E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4)^{*} \text { F T' E' } \$ \\
& \rightarrow \ldots \\
& \rightarrow \ldots \\
& \rightarrow(17+4)^{*}(2-10) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4) *(2-10) E^{\prime} \$ \\
& \rightarrow(17+4) *(2-10)
\end{aligned}
\]

\section*{As a stack machine}
\[
\begin{aligned}
& S \rightarrow E \$ \\
& \rightarrow \text { T E' \$ } \\
& \rightarrow \text { F T' E' \$ } \\
& \rightarrow \text { (E) T' } \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(T E^{\prime}\right) T^{\prime} E^{\prime} \$ \\
& \rightarrow\left(\text { F T' } \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17 \text { T' }^{\prime} \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17 \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+T E^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+F T^{\prime} E^{\prime}\right) \text { T' }^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+4 \text { T' }^{\prime} \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow\left(17+4 \mathrm{E}^{\prime}\right) \mathrm{T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow(17+4) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4)^{*} \mathrm{~F} \mathrm{~T}^{\prime} \mathrm{E}^{\prime} \$ \\
& \rightarrow \ldots \\
& \rightarrow \ldots \\
& \rightarrow(17+4)^{*}(2-10) T^{\prime} E^{\prime} \$ \\
& \rightarrow(17+4)^{*}(2-10) E^{\prime} \$ \\
& \rightarrow(17+4) *(2-10)
\end{aligned}
\]


\section*{But wait! What if there are conflicts in the predictive parsing table?}
\begin{tabular}{|l|}
\hline (G7) \\
\(S::=d \mid X Y\) S \\
\(Y::=c \mid\) \\
\(X::=Y \mid a\) \\
\hline
\end{tabular}
\begin{tabular}{l|lll|} 
& Nullable & FIRST & FOLLOW \\
\(\mathbf{S y y y}\) & false & \(\{\mathrm{c}, \mathrm{d}, \mathrm{a}\}\) & \(\}\) \\
\(\mathbf{Y}\) & true & \(\{\mathrm{c}\}\) & \(\{\mathrm{c}, \mathrm{d}, \mathrm{a}\}\) \\
\(\mathbf{X}\) & true & \(\{\mathrm{c}, \mathrm{a}\}\) & \(\{\mathrm{c}, \mathrm{a}, \mathrm{d}\}\) \\
\cline { 2 - 4 } & & &
\end{tabular}

The resulting "predictive" table is not so predictive....


\section*{LL(1), LL(k), LR(0), LR(1), ...}
- LL(k) : (L)eft-to-right parse, (L)eft-most derivation, \(k\)-symbol lookahead. Based on looking at the next \(k\) tokens, an \(\operatorname{LL}(\mathrm{k})\) parser must predict the next production. We have been looking at LL(1).
- LR(k) : (L)eft-to-right parse, (R)ight-most derivation, k-symbol lookahead. Postpone production selection until the entire right-handside has been seen (and as many as \(k\) symbols beyond).
- LALR(1) : A special subclass of \(\operatorname{LR}(1)\).

\section*{Example}
```

(G8)
S :: = S ; S | ID = E | print (L)
E ::= ID | NUM | E + E | (S, E)
L :== E | L, E

```

To be consistent, I should write the following, but I won' t...
```

(G8)
S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN
E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN
L ::= E | L COMMA E

```

\section*{A right-most derivation ...}
\[
\begin{aligned}
& \text { (G8) } \rightarrow \underline{\mathbf{S}} ; \underline{\mathbf{S}} \\
& \rightarrow \text { S; ID = E } \\
& \mathbf{S}: \mathbf{H}=\mathbf{S} \boldsymbol{S} \\
& \text { | ID = E } \\
& \text { | print (L) } \\
& \text { E:=: ID }
\end{aligned}
\]

\section*{Now, turn it upside down ...}
\[
\begin{aligned}
& \rightarrow \text { a = } 7 \text {; } b=c+(d=5+6, d) \\
& \rightarrow I D=7 ; b=c+(d=5+6, d) \\
& \rightarrow \text { ID = NUM; } b=c+(d=5+6, d) \\
& \rightarrow I D=E ; b=c+(d=5+6, d) \\
& \rightarrow S ; b=c+(d=5+6, d) \\
& \rightarrow S ; I D=c+(d d=5+6, d) \\
& \rightarrow S ; I D=I D+(d=5+6, d) \\
& \rightarrow S ; I D=E+(d=5+6, d) \\
& \rightarrow S ; I D=E+(I D=5+6, d) \\
& \rightarrow S ; I D=E+(I D=N U M+6, d) \\
& \rightarrow S ; I D=E+(I D=E+6, d) \\
& \rightarrow S ; I D=E+(I D=E+N U M, d) \\
& \rightarrow S ; I D=E+(I D=E+E, d) \\
& \rightarrow S ; I D=E+(I D=E, d) \\
& \rightarrow S ; I D=E+(S, d) \\
& \rightarrow S ; I D=E+(S, I D) \\
& \rightarrow S ; I D=E+(S, E) \\
& \rightarrow S ; I D=E+E \\
& \rightarrow S ; I D=E \\
& \rightarrow S ; S
\end{aligned}
\]

\section*{Now, slice it down the middle...}


\section*{Now, add some actions. s = SHIFT, r = REDUCE}


\section*{LL(k) vs. LR(k) reductions}
\[
A \rightarrow \beta \Rightarrow^{*} w^{\prime} \quad\left(\beta \in(T \cup N)^{*}, \quad w^{\prime} \in T^{*}\right)
\]


\section*{Q: How do we know when to shift and when to reduce? A: Build a FSA from LR (0) Items!}

\section*{(G10)}
```

S := A \$

```
A : : = (A )
    \| ( )
```

If

```
\(X:=\alpha \beta\)
is a production, then
\(\mathbf{X}:=\alpha \cdot \beta\)
is an \(L R(0)\) item.

\(L R(0)\) items indicate what is on the stack (to the left of the •) and what is still in the input stream (to the right of the •)

\section*{LR(k) states (non-deterministic)}

The state
\[
\left(A \rightarrow \alpha \bullet \beta, a_{1} a_{2} \cdots a_{k}\right)
\]
should represent this situation:

with
\[
\beta a_{1} a_{2} \cdots a_{k} \Rightarrow^{*} w^{\prime}
\]

\section*{Key idea behind LR(0) items}
- If the "current state" contains the item
\(\mathrm{A}::=\alpha \cdot \mathrm{c} \beta\) and the current symbol in the input buffer is c
- the state prompts parser to perform a shift action
- next state will contain \(A::=\alpha c \cdot \beta\)
- If the "state" contains the item A ::= \(\alpha\) •
- the state prompts parser to perform a reduce action
- If the "state" contains the item S ::= \(\boldsymbol{\alpha} \cdot \$\) and the input buffer is empty
- the state prompts parser to accept
- But How about \(\mathrm{A}::=\alpha \cdot \mathrm{X} \beta\) where X is a nonterminal?

\section*{The NFA for LR(0) items}
- The transition of \(\mathrm{LR}(0)\) items can be represented by an NFA, in which
- 1. each \(L R(0)\) item is a state,
- 2. there is a transition from item \(A::=\alpha \cdot c \beta\) to item \(A::=\alpha c \cdot \beta\) with label \(c\), where \(c\) is a terminal symbol
- 3. there is an \(\varepsilon\)-transition from item \(A::=\alpha \cdot X \beta\) to \(X::=\bullet \gamma\), where \(X\) is a non-terminal
- 4. \(S\) ::= • A \(\$\) is the start state
-5 . \(A::=\alpha \bullet\) is a final state.

\section*{Example NFA for Items}
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{S}\) : \(=\cdot \mathrm{A}\) \$ & S : \(=\mathbf{A} \cdot \$\) & A : \(=\) - ( \(A\) ) \\
\hline A : \(:=\) ( \(\cdot \mathbf{A}\) ) & A : \(=\) ( \(\mathrm{A}^{\text {• }}\) ) & A : \(=\) ( \(\mathbf{A}\) ) \({ }^{\text {a }}\) \\
\hline A : \(=\) - ( ) & A := (-) & A : \(=\) ( ) \({ }^{\text {c }}\) \\
\hline
\end{tabular}


\section*{The DFA from LR(0) items}
- After the NFA for LR(0) is constructed, the resulting DFA for \(\operatorname{LR}(0)\) parsing can be obtained by the usual NFA2DFA construction.
- we thus require
- \(\varepsilon\)-closure (I)
- move(S, a)

Fixed Point Algorithm for Closure(I)
- Every item in I is also an item in Closure(I)
- If \(A::=\alpha \cdot B \beta\) is in Closure \((I)\) and \(B::=\bullet \gamma\) is an item, then add \(B::=\bullet \gamma\) to Closure(I)
- Repeat until no more new items can be added to Closure(I)

\section*{Examples of Closure}

Closure \((\{A::=(\cdot A)\})=\)
\[
\left\{\begin{array}{l}
A::=(\cdot A) \\
A::=\cdot(A) \\
A::=\cdot()
\end{array}\right\}
\]
- closure(\{S ::= • A \$\})
\[
\left\{\begin{array}{l}
S::=\cdot \boldsymbol{A} \$ \\
\boldsymbol{A}::=\cdot(\boldsymbol{A}) \\
\boldsymbol{A}::=\cdot(\mathrm{l})
\end{array}\right.
\]
```

S ::= • A \$
S ::= A • \$
A ::= • (A)
A :==(•A)
A := (A P)
A :=( A ) •
A := • ( )
A :==( •)
A :==( ) •

```

\section*{Goto() of a set of items}
- Goto finds the new state after consuming a grammar symbol while in the current state
- Algorithm for Goto(I, X) where \(I\) is a set of items and X is a non-terminal
\(\operatorname{Goto}(\mathrm{I}, \mathrm{X})=\operatorname{Closure}(\{\mathrm{A}::=\alpha \mathrm{X} \cdot \beta \mid \mathrm{A}::=\alpha \cdot \mathrm{X} \beta\) in I\(\})\)
- goto is the new set obtained by "moving the dot" over X

\section*{Examples of Goto}
- Goto (\{A ::= •(A)\}, ()
\[
\left\{\begin{array}{l}
\boldsymbol{A}::=\quad(\cdot \boldsymbol{A}) \\
\boldsymbol{A}::=\cdot(\boldsymbol{A}) \\
\boldsymbol{A}::=\cdot(\mathrm{r})
\end{array}\right.
\]

- Goto ( \(\{\boldsymbol{A}::=(\cdot \boldsymbol{A})\}, \boldsymbol{A})\)
\[
\{A::=(A \cdot) \quad\}
\]
```

S ::= • A \$
S := A | \$
A ::= • (A)
A ::= (•A )
A ::= (A P)
A :=( (A ) -
A :== • ( )
A ::=( - )
A :==( ) •

```

\section*{Building the DFA states}
- Essentially the usual NFA2DFA construction!!
- Let \(A\) be the start symbol and \(S\) a new start symbol.
- Create a new rule \(S\) ::= A \$
- Create the first state to be Closure(\{ S ::= • A \$\})
- Pick a state I
- for each item \(A::=\alpha \cdot X \beta\) in I
- find Goto(I, X)
- if Goto(I, X) is not already a state, make one
- Add an edge \(X\) from state \(I\) to Goto(I, X) state
- Repeat until no more additions possible

\section*{DFA Example}


\section*{Creating the Parse Table(s)}


\section*{Parsing with an LR Table}

Use table and top-of-stack and input symbol to get action:
If action is
shift sn : advance input one token, push sn on stack
reduce \(X\) ::= \(\alpha\) : pop stack 2* \(|\alpha|\) times (grammar symbols are paired with states). In the state now on top of stack, use goto table to get next
state sn,
push it on top of stack
accept : stop and accept
error : weep (actually, produce a good error message)

\section*{Parsing, again...}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & ACTION & & Goto \\
\hline (G10) & State & 1 & ) & \$ & A \\
\hline (1) \(S\) H= A\$ & s0 & shift to s2 & & & goto s1 \\
\hline (2) \(A \pm=\) (A ) & s1 & & & accept & \\
\hline (3) \(\mathbf{A}: \pm=\) ( ) & s2 & shift to s2 & shift to s5 & & goto s3 \\
\hline (3) A i= ( ) & s3 & & shift to s4 & & \\
\hline & s4 & reduce (2) & reduce (2) & reduce (2) & \\
\hline & s5 & reduce (3) & reduce (3) & reduce (3) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline s0 & (())\$ & shift s2 \\
\hline s0 ( s2 & ())\$ & shift s2 \\
\hline s0 ( s2 ( s2 & ))\$ & shift s5 \\
\hline s0 ( s2 ( s2 ) s5 & )\$ & reduce A : \(=\) () \\
\hline s0 ( s2 A & )\$ & goto s3 \\
\hline s0 ( s2 A s3 & )\$ & shift s4 \\
\hline s0 ( s2 A s3) s4 & \$ & reduce \(\mathrm{A}:=(\mathrm{A})\) \\
\hline s0 A & \$ & goto s1 \\
\hline s0 A s1 & \$ & ACCEPT! \\
\hline
\end{tabular}

\section*{LR Parsing Algorithm}


\section*{Problem With LR(0) Parsing}
- No lookahead
- Vulnerable to unnecessary conflicts
- Shift/Reduce Conflicts (may reduce too soon in some cases)
- Reduce/Reduce Conflicts
- Solutions:
- LR(1) parsing - systematic lookahead

\section*{LR(1) Items}
- An \(\operatorname{LR}(1)\) item is a pair:
\[
(X::=\alpha \cdot \beta, a)
\]
\(-X::=\alpha \beta\) is a production
\(-a\) is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- \([\mathrm{X}::=\alpha \cdot \beta, a]\) describes a context of the parser
- We are trying to find an \(X\) followed by an a, and
- We have (at least) \(\alpha\) already on top of the stack
- Thus we need to see next a prefix derived from \(\beta\) a

\section*{The Closure Operation}
- Need to modify closure operation:.

Closure(Items) = repeat for each \([\mathrm{X}::=\alpha . Y \beta\), a] in Items for each production \(\mathrm{Y}::=\gamma\)

\author{
for each b in First( \(\beta \mathrm{a}\) ) \\ add \([\mathrm{Y}::=, \gamma, \mathrm{b}]\) to Items
}
until Items is unchanged

\section*{Constructing the Parsing DFA (2)}
- A DFA state is a closed set of \(\operatorname{LR}(1)\) items
- The start state contains (S' ::= .S\$, dummy)
- A state that contains \([\mathrm{X}::=\alpha\)., b] is labeled with "reduce with \(X::=\alpha\) on lookahead b"
- And now the transitions ...

\section*{The DFA Transitions}
- A state s that contains \(\left[X::=\alpha_{-} Y \beta, b\right]\) has a transition labeled \(y\) to the state obtained from Transition(s, Y)
- \(Y\) can be a terminal or a non-terminal

Transition(s, Y)
Items \(=\{ \}\)
for each \(\left[X::=\alpha_{-} Y \beta, b\right]\) in \(s\)
add \(\left[X!\alpha Y_{\mu} \beta, b\right]\) to Items
return Closure(Items)

\section*{LR(1)-the parse table}
- Shift and goto as before
- Reduce
- state I with item ( \(\mathrm{A} \rightarrow \alpha\)., z ) gives a reduce \(A \rightarrow \alpha\) if \(z\) is the next character in the input.
- LR(1)-parse tables are very big

\section*{LR(1)-DFA}


From Andrew Appel, "Modern Compiler Implementation in Java" page 65

\section*{LR(1)-parse table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & x & * & \(=\) & \$ & S & E & V & & x & * & \(=\) & \$ & S & E & V \\
\hline 1 & s8 & s6 & & & g2 & g5 & g3 & 8 & & & r4 & r4 & & & \\
\hline 2 & & & & acc & & & & 9 & & & & r1 & & & \\
\hline 3 & & & s4 & r3 & & & & 10 & & & r5 & r5 & & & \\
\hline 4 & s11 & s13 & & & & g9 & g7 & 11 & & & & r4 & & & \\
\hline 5 & & & & r2 & & & & 12 & & & r3 & r3 & & & \\
\hline 6 & s8 & s6 & & & & g10 & g12 & 13 & s11 & s13 & & & & g14 & g7 \\
\hline 7 & & & & r3 & & & & 14 & & & & r5 & & & \\
\hline
\end{tabular}

\section*{LALR States}
- Consider for example the LR(1) states
\[
\begin{aligned}
& \{[\mathrm{X}::=\alpha ., \mathrm{a}],[\mathrm{Y}::=\beta ., \mathrm{c}]\} \\
& \{[\mathrm{X}::=\alpha ., \mathrm{b}],[\mathrm{Y}::=\beta ., \mathrm{d}]\}
\end{aligned}
\]
- They have the same core and can be merged to the state
\[
\{[X::=\alpha ., a / b],[Y::=\beta ., c / d]\}
\]
- These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

\section*{For LALR(1), Collapse States ...}

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14.


\section*{LALR(1)-parse-table}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & x & \({ }^{*}\) & \(=\) & \$ & S & E & V \\
\hline 1 & s 8 & s 6 & & & g 2 & g 5 & g 3 \\
\hline 2 & & & & acc & & & \\
\hline 3 & & & s 4 & r 3 & & & \\
\hline 4 & s8 & s6 & & & & g 9 & g 7 \\
\hline 5 & & & & & & & \\
\hline 6 & s8 & s6 & & & & g10 & g 7 \\
\hline 7 & & & r 3 & r 3 & & & \\
\hline 8 & & & r 4 & r 4 & & & \\
\hline 9 & & & & r 1 & & & \\
\hline 10 & & & r 5 & r 5 & & & \\
\hline
\end{tabular}

\section*{LALR vs. LR Parsing}
- LALR languages are not "natural"
- They are an efficiency hack on LR languages
- You may see claims that any reasonable programming language has a \(\operatorname{LALR}(1)\) grammar, \(\{\) Arguably this is done by defining languages without an LALR(1) grammar as unreasonable \(;\}\).
- In any case, LALR(1) has become a standard for programming languages and for parser generators, in spite of its apparent complexity.```

