

is specified by:

- Q, finite set of machine states
- Σ , alphabet of *input symbols*
- $s \in Q$, the start state
- $F \subseteq Q$, subset of *accepting states*
- Γ , alphabet of **stack symbols**
- $I \in \Gamma$, the *initial stack symbol*
- Δ , finite set of *transitions*, which are either *input-transitions* $A, q \xrightarrow{a} S, q'$, or *\varepsilon-transitions* $A, q \xrightarrow{\varepsilon} S, q'$ (where $A \in \Gamma, q \in Q, a \in \Sigma, S \in \Gamma^*$ and $q' \in Q$).

Allowed operations on stacks $S \in \Gamma^*$

pop the top element A off a non-empty stack AS, producing a new stack S and returning the element A

push a finite string S' of elements on to the top of a stack S, producing a new stack S'S

Note:

- pop is not defined on the empty stack;
- we may push an empty string onto a stack (in which case it is unchanged).

- States: i q f
- Input symbols: *a b*
- Start state: *i*
- Accepting state: f
- Stack symbols: *I A*
- Initial stack symbol: I

	e-transition	<i>a</i> -transitions	b -transitions
Transitions:	$I,q \stackrel{arepsilon}{ ightarrow} arepsilon, f$	$I, i \stackrel{a}{ ightarrow} AI, i$	$A, i \stackrel{b}{ ightarrow} arepsilon, q$
		$A, i \stackrel{a}{ ightarrow} AA, i$	$A,q \stackrel{b}{ ightarrow} arepsilon,q$

describes how a NDPA $M = (Q, \Sigma, s, F, \Gamma, I, \Delta)$ can move from one configuration (S, q, w) to another (S', q, w') in one step.

It is defined to hold if it matches either of the following two cases:

- $(AS', q, aw) \Rightarrow^{1} (SS', q', w)$ where $A, q \xrightarrow{a} S, q'$ is an input-transition of M;
- $(AS', q, w) \Rightarrow^{1} (SS', q', w)$ where $A, q \xrightarrow{\varepsilon} S, q'$ is an ε -transition of M.

We write $(S,q,w) \Rightarrow^* (S',q',w')$ to mean

 $(S,q,w) = (S_1,q_1,w_1) \Rightarrow^1 \cdots \Rightarrow^1 (S_n,q_n,w_n) = (S',q',w')$

holds for some $n \geq 1$ and configurations (S_i, q_i, w_i) .

by I,i-) AI, i $(I_{\gamma}i, a^{3}b^{3}) \Rightarrow (AI, i, a^{2}b^{3})$

 $(I, i, a^3b^3) \Rightarrow (AI, i, a^2b^3)$

by I,i-) AI, i

 \Rightarrow (AAI, i, ab^3)

by A, i -> AA, i by A, i-i AA, i

 \Rightarrow (AAAI, i, b^3)

 $(I_1, i_1, a^3 b^3) \Rightarrow (AI, i_1, a^2 b^3)$

 \Rightarrow (AAI, i, ab^3)

 \Rightarrow (AAAI, i, b^3)

 $\Rightarrow^{1}(AAI, q, b^{2})$

 $\Rightarrow^{1}(AI,q,b)$ \Rightarrow ¹(I, q, ε)

by I,i-) AI, i by A,i-, AA,i by A, i AA, i by $A, i \xrightarrow{b} \mathcal{E}, q$

by A, q = E, q by A, q = E, q

 $(I, i, a^3b^3) \Rightarrow (AI, i, a^2b^3)$

 \Rightarrow (AAI, *i*, *ab*³)

 \Rightarrow (AAAI, i, b^3)

 $\Rightarrow^{1}(AAI, q, b^{2})$

 $\Rightarrow^{1}(AI,q,b)$

 \Rightarrow ¹(I, q, ε)

 \Rightarrow ¹ (ε , f, ε)

by I,i-) AI, i by A, i -> AA, i by A, i - AA, i by $A, i \xrightarrow{b} \mathcal{E}, q$

by A,q = E,q by A, q = 5 E, q

by $I, q \xrightarrow{\varepsilon} \varepsilon, f$

L(M), language accepted by a NPDA M

If $M = (Q, \Sigma, s, F, \Gamma, I, \Delta)$, then

 $L(M) = \{w \in \Sigma^* \mid (I, i, w) \Rightarrow^* (S, q, arepsilon) ext{ holds for }$ some $S \in \Gamma^*$ and $q \in F\}.$

- States: i q f
- Input symbols: *a b*
- Start state: *i*
- Accepting state: f
- Stack symbols: *I* A
- Initial stack symbol: *I*

In this case	
$\mathcal{L}(\mathbf{M}) = \{\mathbf{a}^{\mathbf{M}}\mathbf{b}^{\mathbf{M}}\}$	n>17

	e-transition	<i>a</i> -transitions	b -transitions
Transitions:	$I,q \stackrel{arepsilon}{ ightarrow} arepsilon, f$	$I, i \stackrel{a}{ ightarrow} AI, i$	$A, i \stackrel{b}{ ightarrow} arepsilon, q$
		$A, i \stackrel{a}{ ightarrow} AA, i$	$A,q \stackrel{b}{ ightarrow} arepsilon,q$

A language is context-free if and only if it is accepted by some

push-down automaton.

For a proof, see for example Hopcroft and Ullman Sect. 5.5.

A language is context-free if and only if it is accepted by some push-down automaton.

For a proof, see for example Hopcroft and Ullman Sect. 5.5.

A language is context-free if and only if it is accepted by some push-down automaton.

For a proof, see for example Hopcroft and Ullman Sect. 5.5.

non-deterministic A language is context-free if and only if it is accepted by some / push-down automaton.

For a proof, see for example Hopcroft and Ullman Sect. 5.5.

$$\underline{NB}$$
 • NFA \subseteq NPDA

· deterministic PDA less powerful

11

The way ahead, in Theory What does it mean for a function to be computable [IB Computation Theory] Åre some computational tasks intrinsically unfeasible ?
 [IB complexity Theory] How can we rigorously specify & reason about the behaviour of programs?
 [IB Semantics of PLS, IB Logic & Proof]