Context-free grammars: SEN start non-terminal $G = (\Sigma, N, S, P)$ terminals non-terminals productions T finite sets T $P \subseteq N \times (\Sigma \cup N)^{*}$

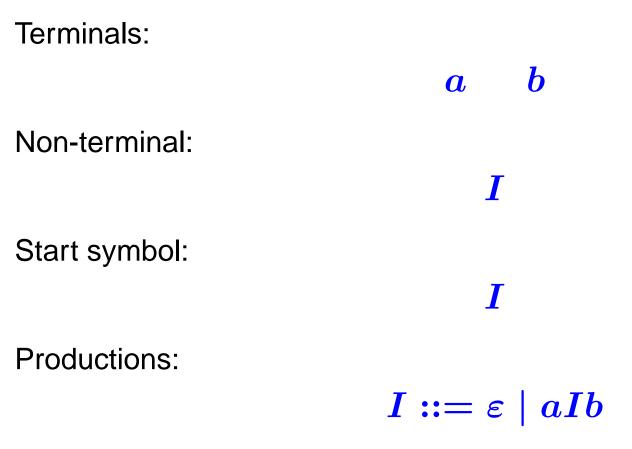
Context-free grammars:

$$G = (\Sigma, N, S, P)$$

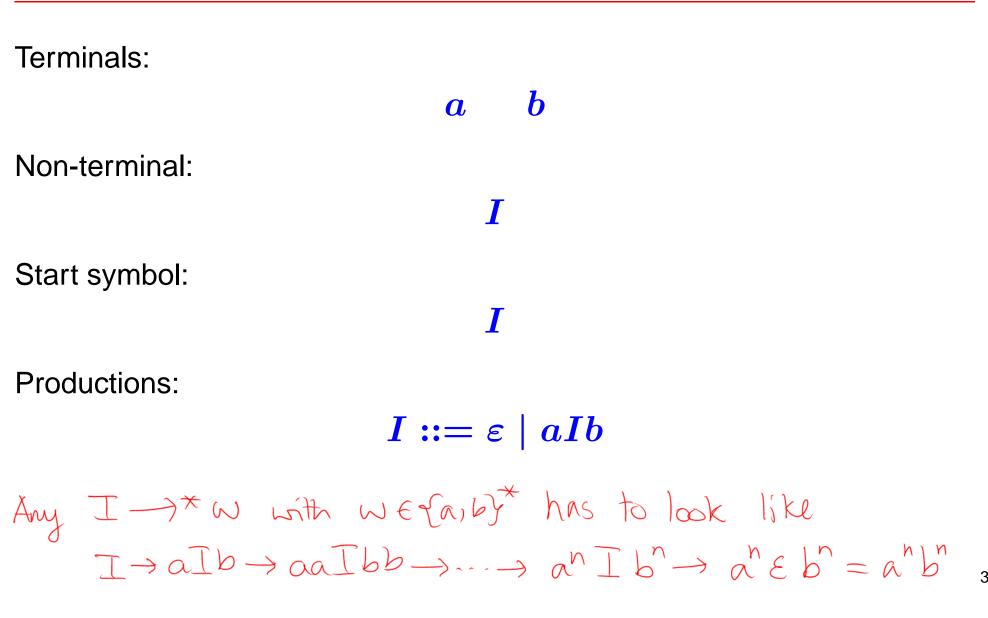
Context-free languages:

$$L(G) = \{ w \in \mathbb{Z}^* \mid S \to * \omega \}$$
where $\rightarrow \subseteq (\mathbb{Z} \cup N)^* \times (\mathbb{Z} \cup N)^*$ consists of
all pairs $\omega_1 n \omega_2 \rightarrow \omega_1 u \omega_2$
for some $(n, u) \in P$
 \mathbb{Z} , some ω_1, ω_2

A context-free grammar for the language $\{a^nb^n \mid n \ge 0\}$



A context-free grammar for the language $\{a^nb^n \mid n \ge 0\}$



```
SENTENCE \rightarrow SUBJECT VERB OBJECT
                      SUBJECT \rightarrow ARTICLE NOUNPHRASE
                        OBJECT \rightarrow ARTICLE NOUNPHRASE
                      ARTICLE \rightarrow a
                      ARTICLE \rightarrow the
                  NOUNPHRASE \rightarrow NOUN
                  NOUNPHRASE \rightarrow ADJECTIVE NOUN
                   ADJECTIVE \rightarrow big
                   ADJECTIVE \rightarrow small
                           \text{NOUN} \rightarrow \text{cat}
                           \text{NOUN} \rightarrow \text{dog}
                           VERB \rightarrow eats
Language generated is regular - its L(r) for r =
(a the) (big small 1 ) (cat 1 dog) eats (a the) (big small 1 ) (cat 1 dog)
```

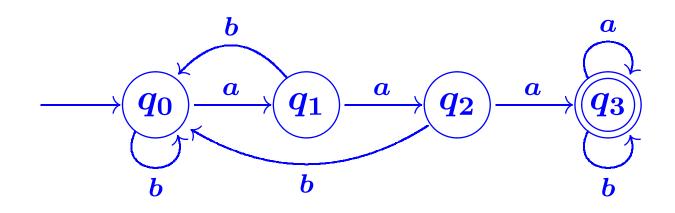
Given a DFA M, the set L(M) of strings accepted by M can be generated by the following context-free grammar:

set of terminals = Σ_M

set of non-terminals = $States_M$

start symbol = start state of M

productions of two kinds:



- States: q_0 , q_1 , q_2 , q_3 . Input symbols: a, b.
- Transitions: as indicated above.
- Start state: q_0 .
- Accepting state(s): q_3 .

Corresponding context-free grammar :

$$q_o := aq_1 | bq_o$$

 $q_1 := aq_2 | bq_o$
 $q_2 := aq_3 | bq_o$
 $q_3 := aq_3 | bq_3 | E$

Definition A context-free grammar is *regular* iff all its productions are of the form

X
ightarrow uY

or

 $X \to u$

where u is a string of terminals and X and Y are non-terminals.

Theorem

- (a) Every language generated by a regular grammar is a regular language (i.e. is the set of strings accepted by some DFA).
- (b) Every regular language can be generated by a regular grammar.

Definition A context-free grammar is **regular** iff all its productions are of the form

X
ightarrow uY

or

X
ightarrow u

where u is a string of terminals and X and Y are non-terminals.

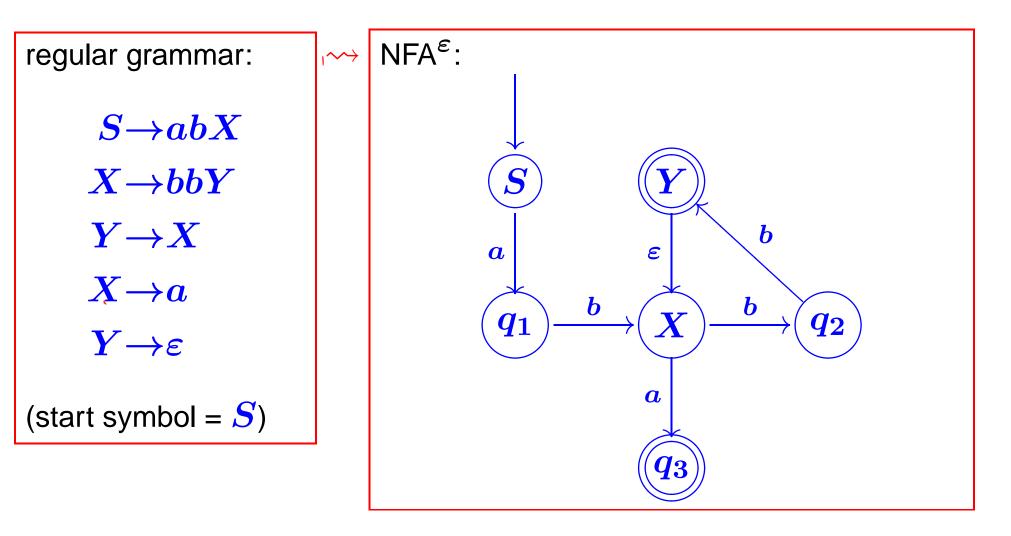
Theorem

(a) Every language generated by a regular grammar is a regular language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammar.

[similar result for "left linear" of grammars]

Example of the construction used in the proof of the Theorem on Slide 40



Theorem

Any context-free language can be generated by a grammar whose productions are of one of the following three types:

X o YZ X o a I o arepsilon

where X, Y, Z are non-terminals, a is a terminal, and I is the start symbol.

The last type of production occurs if and only if the language contains ε (which is why the use of CNFs is usually restricted to languages that do not contain ε .)

[Example 6.4.1, p 54]

CFG in Chomsky Normal Form for {ab]n?o} Terminals: a 6 Non-terminals: I A B C Start : I Productions : J := E [ÅB] AC A := aB ::= hC :: = IB

Theorem

Any context-free language can be generated by a grammar whose productions are of one of the following two types:

X
ightarrow aU I
ightarrow arepsilon

where a is a terminal, U is a (possibly empty) string of non-terminals, and I is the start symbol.

The last type of production occurs if and only if the language contains ε (which is why the use of GNFs is usually restricted to languages that do not contain ε .)