For every regular language L, there is a number $\ell \geq 1$ satisfying the *pumping lemma property*:

all $w \in L$ with $length(w) \ge l$ can be expressed as a concatenation of three strings, $w = u_1 v u_2$, where u_1 , v and u_2 satisfy:

- $length(v) \geq 1$ (i.e. $v \neq \varepsilon$)
- $length(u_1v) \leq \ell$
- for all $n \ge 0$, $u_1 v^n u_2 \in L$ (i.e. $u_1 u_2 \in L$, $u_1 v u_2 \in L$ [but we knew that anyway], $u_1 v v u_2 \in L$, $u_1 v v v u_2 \in L$, etc).

Some questions

- (a) Is there an algorithm which, given a string u and a regular expression r (over the same alphabet), computes whether or not u matches r?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions *r* and *s* (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

Languages

A (formal) language L over an alphabet Σ is just a set of strings in Σ^* . Thus any subset $L \subseteq \Sigma^*$ determines a language over Σ .

The language determined by a regular expression r over Σ is

$$L(r) \stackrel{ ext{def}}{=} \{ u \in \Sigma^* \mid u ext{ matches } r \}.$$

Two regular expressions r and s (over the same alphabet) are equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same members).

Write
$$r \equiv s$$
 to mean $L(r) = L(s)$
 $V(r) \leq L(r) \leq L(s)$

Kleene algebra $(rs)t \equiv r(st)$ $(r|s)t \equiv r|(s|t)$ $\gamma 3 \equiv \gamma \equiv 3\gamma$ $r|s \equiv s|r$ $r \phi \equiv \phi \equiv \phi r$ $\gamma r \equiv \gamma$ $\gamma | \phi \equiv \gamma$

Kleene agebra

$$(r|s)|t \equiv r|(s|t)$$

 $r|s \equiv s|r$
 $r|r \equiv r$
 $r|\phi \equiv r$
 $r|\phi \equiv r$

$$r(s|t) \equiv rs | rt$$

 $(r|s)t \equiv rt | st$

Kleene agebra
((slt)
r

$$(rs)t \equiv r(st)$$

 $r \epsilon \equiv r \equiv \epsilon r$
 $r \phi \equiv \phi \equiv \phi r$
 $\epsilon |rr^* \equiv r^* \equiv r^*r|\epsilon$
rs irt
rt i st

$$(r|s)|t \equiv r|(s|t)$$

 $r|s \equiv s|r$
 $r|r \equiv r$
 $r|\phi \equiv r$

$$r(s|t) \equiv rs|rt$$

 $(r|s)t \equiv rt|st$

Kleene algebra

$$(r|s)|t = r|(s|t)$$

$$r|s = s|r$$

$$r|r = r$$

$$r|\phi = r$$

$$r(\phi = r)$$

$$r(s|t) = rs|rt$$

$$(r|s)t = rt|st$$

$$r \leq ift r|s \equiv s$$

Y

Kleene algebra $(rs)t \equiv r(st)$ $(r|s)t \equiv r|(s|t)$ $\gamma 3 \equiv \gamma \equiv 3 \gamma$ rsesr $r|r \equiv r$ $r \phi \equiv \phi \equiv \phi r$ $\gamma | \phi \equiv \gamma$ $\varepsilon | \gamma \gamma^* \equiv \gamma^* \gamma \equiv \gamma^* \gamma | \varepsilon$ $r(s|t) \equiv rs | rt$ if $r|st \leq t$ then $s \star r \leq t$ $(r|s)t \equiv rt|st$ if $r|ts \leq t$ $r \leq s \quad \text{iff} \quad r \mid s \equiv s$ then rs* < t

$b^{*}a(b^{*}a)^{*} \equiv (a|b)^{*}a$

Ams :

YES !

Some questions

- (a) Is there an algorithm which, given a string u and a regular expression r (over the same alphabet), computes whether or not u matches r?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions *r* and *s* (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

Decision procedure for $r_1 \equiv r_2$ Suffices to decide $r_1 \leq r_2$

(since $r_1 \equiv r_2$ if sonly if $r_1 \leq r_2 \quad AND \quad r_2 \leq r_2$)

Decision procedure for $r_1 \leq r_2$ Note: $r_1 \leq r_2$ iff $L(r_1) \subseteq L(r_2)$

Decision procedure for $r_1 \leq r_2$ Note: $r_1 \leq r_2$ iff $L(r_1) \subseteq L(r_2)$ iff $L(r_1) \cap (\Sigma^* - L(r_2)) = \emptyset$ Decision procedure for $r_1 \leq r_2$ Note: $r_1 \leq r_2$ iff $L(r_1) \subseteq L(r_2)$ $\inf L(r_1) \cap (\Sigma^* - L(r_2)) = \emptyset$ $iff L(r_1 \& (\sim r_2)) = \emptyset$

Decision procedure for $r_1 \leq r_2$ $r_1 \leq r_2$ iff $L(r_1) \subseteq L(r_2)$ Note: $\inf L(r_1) \cap (\Sigma^* - L(r_2)) = \emptyset$ $iff L(r_1 \& (\sim r_2)) = \emptyset$

So suffices to decide, given any r, whether $L(r) = \emptyset$

Lemma If a DFA M accepts any string at all, it accepts one whose length is less than the number of states in M.

Proof. Suppose M has ℓ states (so $\ell \geq 1$). If L(M) is not empty, then we can find an element of it of shortest length, $a_1a_2 \dots a_n$ say (where $n \geq 0$). Thus there is a transition sequence

$$s_M = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n \in Accept_M.$$

If $n \ge \ell$, then not all the n + 1 states in this sequence can be distinct and we can shorten it as on Slide 30. But then we would obtain a strictly shorter string in L(M) contradicting the choice of $a_1a_2 \dots a_n$. So we must have $n < \ell$.

Decision procedure for $r_1 \equiv r_2$

Griven
$$r_1$$
 and r_2 :
() construct DFAs M_1 and M_2 such that
 $L(M_1) = L(r_1 & \sim r_2)$
 $L(M_2) = L(r_2 & \sim r_1)$
(2) check whether $L(M_1) = \emptyset$ and $L(M_2) = \emptyset$
(in which case $r_1 \equiv r_2$)
or not
(in which case $r_1 \equiv r_2$)

Chapter 6 : Grammars

(p47)

SENTENCE \rightarrow SUBJECT VERB OBJECT SUBJECT \rightarrow ARTICLE NOUNPHRASE $OBJECT \rightarrow ARTICLE NOUNPHRASE$ ARTICLE \rightarrow a $ARTICLE \rightarrow the$ NOUNPHRASE \rightarrow NOUN NOUNPHRASE \rightarrow ADJECTIVE NOUN $ADJECTIVE \rightarrow big$ $ADJECTIVE \rightarrow small$ $\text{NOUN} \rightarrow \text{cat}$ $NOUN \rightarrow dog$ $VERB \rightarrow eats$

<u>SENTENCE</u> \rightarrow <u>SUBJECT</u> VERB OBJECT

- \rightarrow <u>ARTICLE</u> NOUNPHRASE VERB OBJECT
- \rightarrow the NOUNPHRASE <u>VERB</u> OBJECT
- \rightarrow the <u>NOUNPHRASE</u> eats OBJECT
- \rightarrow the <u>ADJECTIVE</u> NOUN eats OBJECT
- \rightarrow the big <u>NOUN</u> eats OBJECT
- \rightarrow the big cat eats <u>OBJECT</u>
- \rightarrow the big cat eats <u>ARTICLE</u> NOUNPHRASE
- \rightarrow the big cat eats a $\underline{\text{NOUNPHRASE}}$
- \rightarrow the big cat eats a <u>ADJECTIVE</u> NOUN
- \rightarrow the big cat eats a small $\underline{\rm NOUN}$
- \rightarrow the big cat eats a small dog

exp ::= id | exp op exp | (exp)

- each symbol $a \in \Sigma$ is a regular expression
- ε is a regular expression
- \emptyset is a regular expression
- if r and s are regular expressions, then so is (r|s)
- if *r* and *s* are regular expressions, then so is *rs*
- if r is a regular expression, then so is $(r)^*$

Every regular expression is built up inductively, by *finitely many* applications of the above rules.

(N.B. we assume ε , \emptyset , (,), , and * are not symbols in Σ .)

A context free grammar for regular expressions over alphabet Z.

Set of terminals
$$\sum (\varepsilon, \phi, (., .), ..., *)$$

set of non-terminals $\{r\}$
start symbol r
productions
 $r ::= a |\varepsilon| \phi |(r|r)| rr |(r)^*$
(where $a \in \Sigma$)