The Pumping Lemma

For every regular language L, there is a number $\ell \geq 1$ satisfying the pumping lemma property:
all $\boldsymbol{w} \in L$ with $\operatorname{length}(\boldsymbol{w}) \geq \ell$ can be expressed as a concatenation of three strings, $\boldsymbol{w}=\boldsymbol{u}_{1} \boldsymbol{v} \boldsymbol{u}_{2}$, where $\boldsymbol{u}_{1}, \boldsymbol{v}$ and \boldsymbol{u}_{2} satisfy:

- $\operatorname{length}(v) \geq 1$
(i.e. $\boldsymbol{v} \neq \varepsilon$)
- length $\left(u_{1} v\right) \leq \ell$
- for all $\boldsymbol{n} \geq \mathbf{0}, \boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{v}^{\boldsymbol{n}} \boldsymbol{u}_{\mathbf{2}} \in L$
(i.e. $\boldsymbol{u}_{1} \boldsymbol{u}_{2} \in L, \quad \boldsymbol{u}_{1} \boldsymbol{v} \boldsymbol{u}_{2} \in L$ [but we knew that anyway], $u_{1} v v u_{2} \in L, \quad u_{1} v v v u_{2} \in L, \quad$ etc).

Some questions

(a) Is there an algorithm which, given a string \boldsymbol{u} and a regular expression \boldsymbol{r} (over the same alphabet), computes whether or not \boldsymbol{u} matches \boldsymbol{r} ?
(b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
(c) Is there an algorithm which, given two regular expressions r and s (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)
(d) Is every language of the form $L(r)$?

Languages

A (formal) language L over an alphabet $\boldsymbol{\Sigma}$ is just a set of strings in $\boldsymbol{\Sigma}^{*}$.
Thus any subset $L \subseteq \Sigma^{*}$ determines a language over $\boldsymbol{\Sigma}$.
The language determined by a regular expression r over $\boldsymbol{\Sigma}$ is

$$
L(r) \stackrel{\text { def }}{=}\left\{u \in \Sigma^{*} \mid u \text { matches } r\right\}
$$

Two regular expressions \boldsymbol{r} and s (over the same alphabet) are equivalent iff $L(r)$ and $L(s)$ are equal sets (i.e. have exactly the same members).

$$
\text { Write }\left\{\begin{array}{ccc}
r \equiv s & \text { to mean } & L(r)=L(S) \\
r \leqslant s & " & L(r) \subseteq L(s)
\end{array}\right.
$$

Kleene algebra

$$
\begin{aligned}
(r \mid s) \mid t & \equiv r \mid(s \mid t) \\
r \mid s & \equiv s \mid r \\
r \mid r & \equiv r \\
r \mid \phi & \equiv r
\end{aligned}
$$

$$
\begin{aligned}
& (r s) t \equiv r(s t) \\
& r \varepsilon \equiv r \equiv \varepsilon r \\
& r \phi \equiv \phi \equiv \phi r
\end{aligned}
$$

Kleene algebra

$$
\begin{aligned}
(r \mid s) \mid t & \equiv r \mid(s \mid t) \\
r \mid s & \equiv s \mid r \\
r \mid r & \equiv r \\
r \mid \phi & \equiv r
\end{aligned}
$$

$$
\begin{aligned}
& (r s) t \equiv r(s t) \\
& r \varepsilon \equiv r \equiv \varepsilon r \\
& r \phi \equiv \phi \equiv \phi r
\end{aligned}
$$

$$
\begin{aligned}
r(s \mid t) & \equiv r s \mid r t \\
(r \mid s) t & \equiv r t \mid s t
\end{aligned}
$$

Kleene algebra

$(r \mid s)\|t \equiv r\|(s \mid t)$ $r\|s \equiv s\| r$ $r \mid r \equiv r$ $r \mid \phi \equiv r$	$(r s) t \equiv r(s t)$ $r \varepsilon \equiv r \equiv \varepsilon r$ $r \phi \equiv \phi \equiv \phi r$
$r(s \mid t) \equiv r s \mid r t$ $(r \mid s) t \equiv r t \mid s t$	$\varepsilon\left\|r r^{*} \equiv r^{*} \equiv r^{*} r\right\| \varepsilon$

Kleene algebra

$(r \mid s)\|t \equiv r\|(s \mid t)$ $r\|s \equiv s\| r$ $r \mid r \equiv r$ $r \mid \phi \equiv r$	$(r s) t \equiv r(s t)$ $r \varepsilon \equiv r \equiv \varepsilon r$ $r \phi \equiv \phi \equiv \phi r$
$r(s \mid t) \equiv r s \mid r t$ $(r \mid s) t \equiv r t \mid s t$	$\varepsilon\left\|r r^{*} \equiv r^{*} \equiv r^{*} r\right\| \varepsilon$ $r \leqslant s$ ift $r \mid s \equiv s$

Kleene algebra

$(r \mid s)\|t \equiv r\|(s \mid t)$ $r\|s \equiv s\| r$ $r \mid r \equiv r$ $r \mid \phi \equiv r$	$(r s) t \equiv r(s t)$ $r \varepsilon \equiv r \equiv \varepsilon r$ $r \phi \equiv \phi \equiv \phi r$
$r(s \mid t) \equiv r s \mid r t$ $(r \mid s) t \equiv r t \mid s t$	$\varepsilon\left\|r r^{*} \equiv r^{*} \equiv r^{*} r\right\| \varepsilon$ if $r \mid s t \leqslant t$ then $s^{*} r \leqslant t$
$r \leqslant s$ ift $r \mid s \equiv s$	if $r \mid t s \leqslant t$ if $r s^{*} \leqslant t$

Qu:

$$
b^{*} a\left(b^{*} a\right)^{*} \stackrel{?}{\equiv}(a \mid b)^{*} a
$$

Qu:

$$
b^{*} a\left(b^{*} a\right)^{*} \stackrel{?}{\equiv}(a \mid b)^{*} a
$$

Ans:
YES!

Some questions

(a) Is there an algorithm which, given a string \boldsymbol{u} and a regular expression \boldsymbol{r} (over the same alphabet), computes whether or not \boldsymbol{u} matches \boldsymbol{r} ?
(b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
(c) Is there an algorithm which, given two regular expressions r and s (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)
(d) Is every language of the form $L(r)$?

Decision procedure for $r_{1} \equiv r_{2}$
Suffices to decide $r_{1} \leqslant r_{2}$
(since $r_{1} \equiv r_{2}$ ifsonly if $r_{1} \leqslant r_{2}$ AND $r_{2} \leqslant r_{1}$)

Decision procedure for $r_{1} \leqslant r_{2}$
Note: $r_{1} \leqslant r_{2}$ if $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$

Decision procedure for $r_{1} \leqslant r_{2}$
Note: $r_{1} \leqslant r_{2}$ if $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$

$$
\text { inf } L\left(r_{1}\right) \cap\left(\Sigma^{*}-L\left(r_{2}\right)\right)=\varnothing
$$

Decision procedure for $r_{1} \leqslant r_{2}$
Note: $r_{1} \leqslant r_{2}$ if $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$
if $L\left(r_{1}\right) \cap\left(\Sigma^{t}-L\left(r_{2}\right)\right)=\varnothing$
iff $L\left(r_{1} \&\left(\sim r_{2}\right)\right)=\varnothing$

Decision procedure for $r_{1} \leqslant r_{2}$
Note: $r_{1} \leqslant r_{2}$ if $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$
inf $L\left(r_{1}\right) \cap\left(\Sigma^{*}-L\left(r_{2}\right)\right)=\varnothing$
iff $L\left(r_{1} \&\left(\sim r_{2}\right)\right)=\varnothing$
So suffices to decide, given any r, whether $L(r)=\varnothing$

Lemma If a DFA M accepts any string at all, it accepts one whose length is less than the number of states in M.

Proof. Suppose M has ℓ states (so $\ell \geq 1$). If $L(M)$ is not empty, then we can find an element of it of shortest length, $\boldsymbol{a}_{1} \boldsymbol{a}_{2} \ldots \boldsymbol{a}_{\boldsymbol{n}}$ say (where $\boldsymbol{n} \geq 0$). Thus there is a transition sequence

$$
s_{M}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \ldots \xrightarrow{a_{n}} q_{n} \in \text { Accept }_{M}
$$

If $\boldsymbol{n} \geq \boldsymbol{\ell}$, then not all the $\boldsymbol{n}+\mathbf{1}$ states in this sequence can be distinct and we can shorten it as on Slide 30. But then we would obtain a strictly shorter string in $L(M)$ contradicting the choice of $a_{1} a_{2} \ldots a_{n}$. So we must have $n<\ell$.

Decision procedure for $r_{1} \equiv r_{2}$
Given r_{1} and r_{2} :
(1) Construct DFAs M_{1} and M_{2} such that

$$
\begin{aligned}
& L\left(M_{1}\right)=L\left(r_{1} \& \sim r_{2}\right) \\
& U\left(M_{2}\right)=L\left(r_{2} \& \sim r_{1}\right)
\end{aligned}
$$

(2) check whether $L\left(M_{1}\right)=\varnothing$ and $L\left(M_{2}\right)=\varnothing$ (in which case $r_{1} \equiv r_{2}$)
or not
(in which case $r_{1} \not \equiv r_{2}$)

Chapter 6 :
Grammars

$$
(p 47)
$$

Some production rules for 'English' sentences

```
    SENTENCE }->\mathrm{ SUBJECT VERB OBJECT
    SUBJECT }->\mathrm{ ARTICLE NOUNPHRASE
    OBJECT }->\mathrm{ ARTICLE NOUNPHRASE
    ARTICLE }->\mathrm{ a
    ARTICLE }->\mathrm{ the
NOUNPHRASE }->\mathrm{ NOUN
NOUNPHRASE }->\mathrm{ ADJECTIVE NOUN
ADJECTIVE }->\mathrm{ big
ADJECTIVE }->\mathrm{ small
    NOUN }->\mathrm{ cat
    NOUN }->\mathrm{ dog
    VERB }->\mathrm{ eats
```


A derivation

SENTENCE \rightarrow SUBJECT VERB OBJECT

\rightarrow ARTICLE NOUNPHRASE VERB OBJECT
\rightarrow the NOUNPHRASE VERB OBJECT
\rightarrow the NOUNPHRASE eats OBJECT
\rightarrow the ADJECTIVE NOUN eats OBJECT
\rightarrow the big NOUN eats OBJECT
\rightarrow the big cat eats OBJECT
\rightarrow the big cat eats ARTICLE NOUNPHRASE
\rightarrow the big cat eats a NOUNPHRASE
\rightarrow the big cat eats a ADJECTIVE NOUN
\rightarrow the big cat eats a small NOUN
\rightarrow the big cat eats a small dog

Example of Backus-Naur Form (BNF)

Terminals:

$$
\mathrm{x}^{\prime}+-*(\quad)
$$

Non-terminals:
id op exp

Start symbol:

$$
\exp
$$

Productions:

$$
\begin{aligned}
& \text { id }:=\mathrm{x} \mid \mathrm{id}^{\prime} \\
& \text { op }::=+|-| * \\
& \exp :=\text { id } \mid \exp \text { op } \exp \mid(\exp)
\end{aligned}
$$

Regular expressions over an alphabet Σ

- each symbol $\boldsymbol{a} \in \boldsymbol{\Sigma}$ is a regular expression
- ε is a regular expression
- \emptyset is a regular expression
- if r and s are regular expressions, then so is $(r \mid s)$
- if \boldsymbol{r} and \boldsymbol{s} are regular expressions, then so is $\boldsymbol{r} \boldsymbol{s}$
- if \boldsymbol{r} is a regular expression, then so is $(\boldsymbol{r})^{*}$

Every regular expression is built up inductively, by finitely many applications of the above rules.
(N.B. we assume $\varepsilon, \emptyset,(),, \mid$, and * are not symbols in Σ.)

A context free grammar for regular expressions over alphabet \sum
set of terminals $\sum \cup\{\varepsilon, \phi,(0), 1, *\}$ set of non-terminals $\{r\}$ start symbol r productions

$$
\begin{array}{r}
r::=a|\varepsilon| \phi|(r \mid r)| r r \mid(r)^{*} \\
\text { (where } a \in \Sigma)
\end{array}
$$

