The Pumping Lemma

For every regular language L, there is a number £ > 1 satisfying the
pumping lemma property

all w € L with length(w) > £ can be expressed as a concatenation
of three strings, w = ujvu9, where uwy, v and w9 satisfy:

e length(v) > 1
(i.,e. v #~ €)

o length(uiv) < /£

e forallnn > 0, ujv"us € L
i.e.uius € L, uwuivue € L [but we knew that anyway],
uivvus € L, wujvvvus € L, etc).

29

Some guestions

(a) Is there an algorithm which, given a string « and a regular expression
1 (over the same alphabet), computes whether or not «u matches 7?

(b) In formulating the definition of regular expressions, have we missed
out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions 77 and s
(over the same alphabet), computes whether or not they are
equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(7)?

Languages

A (formal) language L over an alphabet X is just a set of strings in 22*.
Thus any subset L C 32* determines a language over ..

The language determined by a regular expression T over X is

L(r) def {u € ¥* | u matches r}.

Two regular expressions 7 and s (over the same alphabet) are

equivalent iff L(7) and L(s) are equal sets (i.e. have exactly the same
members).

ocr=s to mian L(r) = L(s)
Wﬁ\r@ g r<g . N L(WB = L<§>

Kleene algebra.

(rlskt= rl(slt)

rls= sy

Y

rr

r =1
D=y

(rs)t = r(st)

YeE=Y = g\

rP=P=or

Kleene alge,lom

r|(s|t) (rs)t = r(st)

SlY YeE=Y = g\

ro=@d= @r

Kleene alge,lom

(rs)t = r(st)

YeE=Y = g\
rP=P=@r
elrrf=r¥=r¥r|¢

Kleene alge,lom

(r 18)

r|s
rr
Y

rl(slt)

S|y
r
V-

r
P

(rs)t = r(st)

YeE=Y = g\

r(s| &)= rs | rE
(rys)t =vb | st

Y< S r){'t F\S =8

Kleene alﬁe,lom

(rlskk= r|(s|t)

ﬁlse S|y
Clr = v
Y|P =y

(rs)t = r(st)

YeE=Y = g\

r(si &)= rs| rt
(r1s)t =vkl st

Y< S r){'t r\s =S

Some guestions

(a) Is there an algorithm which, given a string « and a regular expression
1 (over the same alphabet), computes whether or not «u matches 7?

(b) In formulating the definition of regular expressions, have we missed
out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions 77 and s
(over the same alphabet), computes whether or not they are
equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(7)?

)

Decigion pmc,e.iww {;W Y

P

(s v =7, EF&MSF N< AV G <)

Decision pmc,e_&um, {Lw N,
Nl : n<r, i} Lin) < L)

Decision Pmc,e,&v\,w —G\N Y\ < Y,
Nl : n<r, i} Lin) < L)

\P[L-(Y\) () (i—x‘"‘ MYZ)B — @

Decision Pmc,e,&v\,w —G\)Y Y\ < Y,
Nl : n<r, i} Lin) < L)

: <
Decision pmc,e,&v\,w —G\N Y\ & ¥,

Nsle :

nsr, i Lin) < L)

Lemma If a DFA M accepts any string at all, it accepts one whose
length is less than the number of states in V1.

Proof. Suppose M has £ states (so £ > 1). If L(M) is not empty,
then we can find an element of it , 142 ...0a, Say
(where n. > 0). Thus there is a transition sequence

sM:q()ﬂ)qla—2>q2---a—”>qn€AcceptM.

If n > £, then not all the 1 + 1 states in this sequence can be distinct
and we can shorten it as on Slide 30. But then we would obtain a strictly
shorter string in L (M) contradicting the choice of ajas . . . @y,. SO
we must have n < £. O

34

Decision Pmc,e,&v\,w —G\)Y A=

Grivenn 1, ownd i,
@® Constnck DFAs M, o M, Such Pt
LUm) = L(n & ~vry)
L(.N\Q) = L’({:L & ’V)/‘l>

@ heck Wetir LMY= and UM,)=
(n whidh case, 17 = 17,)
oY V\A:
(v LWdh case ¥ & Y2,>

Chapter 6 :

Grammars

(p47)

Some production rules for ‘English’ sentences

SENTENCE — SUBJECT VERB OBJECT
SUBJECT — ARTICLE NOUNPHRASE
OBJECT — ARTICLE NOUNPHRASE

ARTICLE — a
ARTICLE — the

NOUNPHRASE —> NOUN
NOUNPHRASE — ADJECTIVE NOUN

ADJECTIVE — big
ADJECTIVE — small

NOUN — cat
NOUN — dog

VERB — eats

35

A derivation

SENTENCE — SUBJECT VERB OBJECT
— ARTICLE NOUNPHRASE VERB OBJECT
— the NOUNPHRASE VERB OBJECT
— the NOUNPHRASE eats OBJECT
— the ADJECTIVE NOUN eats OBJECT
—> the big NOUN eats OBJECT
—> the big cat eats OBJECT
—> the big cat eats ARTICLE NOUNPHRASE
—> the big cat eats a NOUNPHRASE
—> the big cat eats a ADJECTIVE NOUN
—> the big cat eats a small NOUN
—> the big cat eats a small dog

36

Example of Backus-Naur Form (BNF)

Terminals:

Non-terminals:

Start symbol:
Productions:
1d
op
exp

x ' 4+ — x ()

id op exp
exp
x | id’
| — 1=

id | exp op exp | (exp)

37

Regular expressions over an alphabet 32

® cach symbol a € X is a regular expression

® £ is a regular expression

e () is a regular expression

e if and s are regular expressions, then so is (7|s)
® if » and s are regular expressions, then sois s

e if r is a regular expression, then so is (7)*

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume &, @, (,), |, and * are not symbols in X2.)

A Conrent f»% gW\W\M fo V‘GﬁV\\M P/)()o rcgs,‘am

Sek 8 teeminals S uie, @, (), |,* Y
Sk & non-terminals {_f}
Stk S\amba‘e. Y
produchions
o= a[Z\Cb | (rlr) l ry l (r)*
(where 2 €3)

