
The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1 satisfying the

pumping lemma property :

all w ∈ L with length(w) ≥ ℓ can be expressed as a concatenation

of three strings, w = u1vu2, where u1, v and u2 satisfy:

• length(v) ≥ 1
(i.e. v 6= ε)

• length(u1v) ≤ ℓ

• for all n ≥ 0, u1v
nu2 ∈ L

(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway],

u1vvu2 ∈ L, u1vvvu2 ∈ L, etc).

29

Some questions

(a) Is there an algorithm which, given a string u and a regular expression

r (over the same alphabet), computes whether or not u matches r?

(b) In formulating the definition of regular expressions, have we missed

out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions r and s
(over the same alphabet), computes whether or not they are

equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

9

Languages

A (formal) language L over an alphabet Σ is just a set of strings in Σ∗.

Thus any subset L ⊆ Σ∗ determines a language over Σ.

The language determined by a regular expression r over Σ is

L(r)
def
= {u ∈ Σ∗ | u matches r}.

Two regular expressions r and s (over the same alphabet) are

equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same

members).

8

Some questions

(a) Is there an algorithm which, given a string u and a regular expression

r (over the same alphabet), computes whether or not u matches r?

(b) In formulating the definition of regular expressions, have we missed

out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions r and s
(over the same alphabet), computes whether or not they are

equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

9

Lemma If a DFA M accepts any string at all, it accepts one whose

length is less than the number of states in M .

Proof. Suppose M has ℓ states (so ℓ ≥ 1). If L(M) is not empty,

then we can find an element of it of shortest length, a1a2 . . . an say

(where n ≥ 0). Thus there is a transition sequence

sM = q0
a1−→ q1

a2−→ q2 · · ·
an−→ qn ∈ AcceptM .

If n ≥ ℓ, then not all the n + 1 states in this sequence can be distinct

and we can shorten it as on Slide 30. But then we would obtain a strictly

shorter string in L(M) contradicting the choice of a1a2 . . . an. So

we must have n < ℓ.

34

Some production rules for ‘English’ sentences

SENTENCE → SUBJECT VERB OBJECT

SUBJECT → ARTICLE NOUNPHRASE

OBJECT → ARTICLE NOUNPHRASE

ARTICLE → a

ARTICLE → the

NOUNPHRASE → NOUN

NOUNPHRASE → ADJECTIVE NOUN

ADJECTIVE → big

ADJECTIVE → small

NOUN → cat

NOUN → dog

VERB → eats

35

A derivation

SENTENCE → SUBJECT VERB OBJECT

→ ARTICLE NOUNPHRASE VERB OBJECT

→ the NOUNPHRASE VERB OBJECT

→ the NOUNPHRASE eats OBJECT

→ the ADJECTIVE NOUN eats OBJECT

→ the big NOUN eats OBJECT

→ the big cat eats OBJECT

→ the big cat eats ARTICLE NOUNPHRASE

→ the big cat eats a NOUNPHRASE

→ the big cat eats a ADJECTIVE NOUN

→ the big cat eats a small NOUN

→ the big cat eats a small dog

36

Example of Backus-Naur Form (BNF)

Terminals:

x ′ + − ∗ ()

Non-terminals:

id op exp

Start symbol:

exp

Productions:

id ::= x | id′

op ::= + | − | ∗

exp ::= id | exp op exp | (exp)

37

Regular expressions over an alphabet Σ

• each symbol a ∈ Σ is a regular expression

• ε is a regular expression

• ∅ is a regular expression

• if r and s are regular expressions, then so is (r|s)

• if r and s are regular expressions, then so is rs

• if r is a regular expression, then so is (r)∗

Every regular expression is built up inductively, by finitely many

applications of the above rules.

(N.B. we assume ε, ∅, (,), |, and ∗ are not symbols in Σ.)

5

