Previously on RLFA...

REGULAR EXPRESSIONS $r \quad\left(\right.$ eg. $\left.(a \mid b)^{*} a a a(a \mid b)^{*}\right)$

regular language $=$ set of strings of the form $L(M)$ (all strings accepted by M) for some $f \cdot a$.

REGULAR EXPRESSIONS $r \quad\left(\right.$ eg. $\left.(a \mid b)^{*} a a a(a \mid b)^{*}\right)$
Finite xutomata M (eg.

Kleene:
(a) For all r, can construct M with $L(M)=L(r)$
(b) For all M, can construct r with $L(r)=L(M)$

Typical application: lexical analysis at start of compilation

- PL definition specifies legal tokens (keywords) using a reg. exp.
- Lexical analyser splits a character stream into a stream of tokens by constructing a fa. from the reg. exp.

Examples of non-regular languages

- The set of strings over $\{(), a, b,, \ldots, z\}$ in which the parentheses '(' and ')' occur well-nested.
- The set of strings over $\{a, b, \ldots, z\}$ which are palindromes, i.e. which read the same backwards as forwards.
- $\left\{a^{n} b^{n} \mid n \geq 0\right\}$

The Pumping Lemma

For every regular language L, there is a number $\ell \geq 1$ satisfying the pumping lemma property:
all $\boldsymbol{w} \in L$ with length $(\boldsymbol{w}) \geq \ell$ can be expressed as a concatenation of three strings, $\boldsymbol{w}=\boldsymbol{u}_{1} \boldsymbol{v} \boldsymbol{u}_{2}$, where $\boldsymbol{u}_{1}, \boldsymbol{v}$ and \boldsymbol{u}_{2} satisfy:

- $\operatorname{length}(v) \geq 1$
(i.e. $\boldsymbol{v} \neq \varepsilon$)
- length $\left(u_{1} v\right) \leq \ell$
- for all $\boldsymbol{n} \geq \mathbf{0}, \boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{v}^{\boldsymbol{n}} \boldsymbol{u}_{\mathbf{2}} \in L$
(i.e. $\boldsymbol{u}_{1} \boldsymbol{u}_{2} \in L, \quad \boldsymbol{u}_{1} \boldsymbol{v} \boldsymbol{u}_{2} \in L$ [but we knew that anyway], $u_{1} v \boldsymbol{v} u_{2} \in L, \quad u_{1} v v v u_{2} \in L, \quad$ etc $)$.

Suppose L is $L(M)$ for a DFA M

If $\boldsymbol{n} \geq \boldsymbol{\ell}=$ number of states of \boldsymbol{M}, then in

$$
s_{M}=\underbrace{q_{0} \stackrel{a_{1}}{\longrightarrow} q_{1} \stackrel{a_{2}}{\longrightarrow} q_{2} \cdots \stackrel{a_{\ell}}{\longrightarrow} q_{\ell}}_{\ell+1 \text { states }} \cdots \stackrel{a_{n}}{\longrightarrow} q_{n} \in \operatorname{Accept}_{M}
$$

$\boldsymbol{q}_{0}, \ldots, \boldsymbol{q}_{\ell}$ can't all be distinct states. So $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $0 \leq i<j \leq \ell$. So the above transition sequence looks like

$$
s_{M}=\boldsymbol{q}_{0}{\xrightarrow{u_{1}} *}_{*}^{\boldsymbol{q}_{i}}={\underset{\boldsymbol{q}}{j}}_{*}^{u^{u_{2}}}{ }^{*} \boldsymbol{q}_{n} \in \operatorname{Accept}_{M}
$$

where

$$
u_{1} \stackrel{\text { def }}{=} a_{1} \ldots a_{i} \quad v \stackrel{\text { def }}{=} a_{i+1} \ldots a_{j} \quad u_{2} \stackrel{\text { def }}{=} a_{j+1} \ldots a_{n}
$$

How to use the Pumping Lemma to prove that a language L is not regular

For each $\ell \geq 1$, find some $w \in L$ of length $\geq \ell$ so that
$(\dagger)\left\{\begin{array}{l}\text { no matter how } w \text { is split into three, } w=u_{1} v u_{2}, \\ \text { with } \operatorname{length}\left(u_{1} v\right) \leq \ell \text { and } \operatorname{length}(v) \geq 1, \\ \text { there is some } n \geq 0 \text { for which } u_{1} v^{n} u_{2} \text { is not in } L .\end{array}\right.$

Examples

(i) $L_{1} \stackrel{\text { def }}{=}\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular. [For each $\ell \geq 1, a^{\ell} b^{\ell} \in L_{1}$ is of length $\geq \ell$ and has property (\dagger) on Slide 31.]
(ii) $L_{2} \stackrel{\text { def }}{=}\left\{w \in\{a, b\}^{*} \mid w\right.$ a palindrome $\}$ is not regular. [For each $\ell \geq 1, a^{\ell} b a^{\ell} \in L_{1}$ is of length $\geq \ell$ and has property (\dagger).]
(iii) $L_{3} \stackrel{\text { def }}{=}\left\{a^{p} \mid p\right.$ prime $\}$ is not regular.
[For each $\ell \geq 1$, we can find a prime p with $p>2 \ell$ and then $a^{p} \in L_{3}$ has length $\geq \ell$ and has property (\dagger).]

Example of a non-regular language

 that satisfies the 'pumping lemma property'$$
\begin{aligned}
L \stackrel{\text { def }}{=} & \left\{c^{m} a^{n} b^{n} \mid m \geq 1 \text { and } n \geq 0\right\} \\
& \cup \\
& \left\{a^{m} b^{n} \mid m, n \geq 0\right\}
\end{aligned}
$$

satisfies the pumping lemma property on Slide 29 with $\ell=1$.
[For any $\boldsymbol{w} \in L$ of length ≥ 1, can take $u_{1}=\varepsilon, v=$ first letter of w, $\boldsymbol{u}_{2}=$ rest of \boldsymbol{w}.]

But L is not regular.

$$
\begin{aligned}
& \text { Assume } L=L(M) \text { for some DFA M } \\
& \text { and obtain a contradiction... }
\end{aligned}
$$

Given M, define a new NFA N as follows:

Given M, define a new NFA N as follows:

So $L(N)=\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$, contradiction to Pumping Lemma.

