Lemma Given an NFA M, for each subset $Q \subseteq States_M$ and each pair of states $q, q' \in States_M$, there is a regular expression $r_{q,q'}^Q$ satisfying

 $L(r_{q,q'}^Q) = \{ u \in (\Sigma_M)^* \mid q \xrightarrow{u} q' \text{ in } M ext{ with all inter-} \ ext{mediate states of the sequence} \ ext{in } Q \}.$

Hence L(M) = L(r), where $r = r_1 | \cdots | r_k$ and

k = number of accepting states,

 $r_i = r^Q_{s,q_i}$ with $Q = States_M$,

s = start state,

 $q_i = i$ th accepting state.

(In case k = 0, take r to be the regular expression \emptyset .)

Example

Direct inspection yields:

$r_{i,j}^{\{0\}}$	0	1	2	$r_{i,j}^{\{0,2\}}$	0	1	2
0				0	a^*	a^*b	
1	Ø	ε	\boldsymbol{a}	1			
2	$\emptyset aa^*$	a^*b	ε	2			

Not(M)

- $States_{Not(M)} \stackrel{\text{def}}{=} States_M$
- $\Sigma_{Not(M)} \stackrel{\text{def}}{=} \Sigma_M$
- transitions of Not(M) = transitions of M
- start state of Not(M) = start state of M
- $Accept_{Not(M)} = \{q \in States_M \mid q \notin Accept_M\}.$

Provided M is a *deterministic* finite automaton, then u is accepted by Not(M) iff it is not accepted by M:

 $L(Not(M)) = \{ u \in \Sigma^* \mid u \notin L(M) \}.$

$And(M_1, M_2)$

- states of $And(M_1,M_2)$ are all ordered pairs (q_1,q_2) with $q_1 \in States_{M_1}$ and $q_2 \in States_{M_2}$
- alphabet of $And(M_1,M_2)$ is the common alphabet of M_1 and M_2
- $(q_1, q_2) \xrightarrow{a} (q'_1, q'_2)$ in $And(M_1, M_2)$ iff $q_1 \xrightarrow{a} q'_1$ in M_1 and $q_2 \xrightarrow{a} q'_2$ in M_2
- start state of $And(M_1, M_2)$ is (s_{M_1}, s_{M_2})
- (q_1, q_2) accepting in $And(M_1, M_2)$ iff q_1 accepting in M_1 and q_2 accepting in M_2 .