Lemma Given an NFA M, for each subset $Q \subseteq$ States $_{M}$ and each pair of states $q, q^{\prime} \in$ States $_{M}$, there is a regular expression $r_{q, q^{\prime}}^{Q}$ satisfying

$$
L\left(r_{q, q^{\prime}}^{Q}\right)=\left\{u \in\left(\Sigma_{M}\right)^{*} \mid \quad \boldsymbol{q} \xrightarrow{u}^{*} \boldsymbol{q}^{\prime} \text { in } M\right. \text { with all inter- }
$$ mediate states of the sequence in $Q\}$.

Hence $L(M)=L(r)$, where $r=r_{1}|\cdots| r_{k}$ and
$\boldsymbol{k}=$ number of accepting states,
$r_{i}=r_{s, q_{i}}^{Q}$ with $Q=$ States $_{M}$,
$s=$ start state,
$\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{i}$ th accepting state.
(In case $\boldsymbol{k}=\mathbf{0}$, take \boldsymbol{r} to be the regular expression \emptyset.)

Example

Direct inspection yields:

$r_{i, j}^{\{0\}}$	0	1	2		$r_{i, j}^{\{0,2\}}$	0	1
0				0	a^{*}	$a^{*} b$	
1	\emptyset	ε	a	1			
2	$a a^{*}$	$a^{*} b$	ε	2			

$\operatorname{Not}(M)$

- States $\operatorname{Sot}(M) \stackrel{\text { def }}{=}$ States $_{M}$
- $\Sigma_{N o t(M)} \stackrel{\text { def }}{=} \Sigma_{M}$
- transitions of $\operatorname{Not}(M)=$ transitions of M
- start state of $\operatorname{Not}(M)=$ start state of M

Provided \boldsymbol{M} is a deterministic finite automaton, then \boldsymbol{u} is accepted by $\operatorname{Not}(M)$ iff it is not accepted by M :

$$
L(\operatorname{Not}(M))=\left\{u \in \Sigma^{*} \mid u \notin L(M)\right\}
$$

$\operatorname{And}\left(M_{1}, M_{2}\right)$

- states of $\operatorname{And}\left(M_{1}, M_{2}\right)$ are all ordered pairs $\left(\boldsymbol{q}_{1}, q_{2}\right)$ with $q_{1} \in$ States $_{M_{1}}$ and $q_{2} \in$ States $_{M_{2}}$
- alphabet of $\operatorname{And}\left(M_{1}, M_{2}\right)$ is the common alphabet of M_{1} and M_{2}
- $\left(q_{1}, q_{2}\right) \xrightarrow{a}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ in $\operatorname{And}\left(M_{1}, M_{2}\right)$ iff $q_{1} \xrightarrow{a} q_{1}^{\prime}$ in M_{1} and $q_{2} \xrightarrow{a} q_{2}^{\prime}$ in M_{2}
- start state of $\operatorname{And}\left(M_{1}, M_{2}\right)$ is $\left(s_{M_{1}}, s_{M_{2}}\right)$
- $\left(q_{1}, q_{2}\right)$ accepting in $\operatorname{And}\left(M_{1}, M_{2}\right)$ iff \boldsymbol{q}_{1} accepting in M_{1} and q_{2} accepting in M_{2}.

