Example of a finite automaton

States: $\boldsymbol{q}_{\mathbf{0}}, \boldsymbol{q}_{\mathbf{1}}, \boldsymbol{q}_{\mathbf{2}}, \boldsymbol{q}_{\mathbf{3}}$.
Input symbols: $\boldsymbol{a}, \boldsymbol{b}$.
Transitions: as indicated above.
Start state: $\boldsymbol{q}_{\mathbf{0}}$.
Accepting state(s): $\boldsymbol{q}_{\mathbf{3}}$.

$L(M)$, language accepted by a finite automaton M

consists of all strings u over its alphabet of input symbols satisfying $q_{0} \xrightarrow{u} * \boldsymbol{q}$ with \boldsymbol{q}_{0} the start state and \boldsymbol{q} some accepting state. Here

$$
q_{0} \xrightarrow{u^{*}} q
$$

means, if $u=a_{1} a_{2} \ldots a_{n}$ say, that for some states
$\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{\boldsymbol{n}}=\boldsymbol{q}$ (not necessarily all distinct) there are transitions of the form

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{3}} \cdots \xrightarrow{a_{n}} q_{n}=q
$$

N.B.

| case $n=0:$ | $q \xrightarrow{\varepsilon}{ }^{*} q^{\prime}$ | iff | $q=q^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| case $n=1:$ | $q \xrightarrow{a}{ }^{*} q^{\prime}$ | iff | $q \xrightarrow{a} q^{\prime}$. |

A non-deterministic finite automaton (NFA), M, is specified by

- a finite set States $_{M}$ (of states)
- a finite set Σ_{M} (the alphabet of input symbols)
- for each $\boldsymbol{q} \in$ States $_{M}$ and each $a \in \Sigma_{M}$, a subset
$\Delta_{M}(q, a) \subseteq$ States $_{M}$ (the set of states that can be reached from \boldsymbol{q} with a single transition labelled \boldsymbol{a})
- an element $s_{M} \in$ States $_{M}$ (the start state)
- a subset Accept $_{M} \subseteq$ States $_{M}$ (of accepting states)

Example of a non-deterministic finite automaton

Input alphabet: $\{a, b\}$.
States, transitions, start state, and accepting states as shown:

The language accepted by this automaton is the same as for the automaton on Slide 10, namely

$$
\left\{u \in\{a, b\}^{*} \mid u \text { contains three consecutive } a \text { 's }\right\}
$$

A deterministic finite automaton (DFA)

 is an NFA M with the property that for each $q \in$ States $_{M}$ and $a \in \Sigma_{M}$, the finite set $\Delta_{M}(q, a)$ contains exactly one element-call it $\delta_{M}(q, a)$.Thus in this case transitions in M are essentially specified by a next-state function, δ_{M}, mapping each (state, input symbol)-pair (q, a) to the unique state $\delta_{M}(q, a)$ which can be reached from q by a transition labelled \boldsymbol{a} :

$$
q \xrightarrow{a} q^{\prime} \quad \text { iff } \quad q^{\prime}=\delta_{M}(q, a)
$$

An NFA with ε-transitions $\left(\mathrm{NFA}^{\varepsilon}\right)$
is specified by an NFA M together with a binary relation, called the ε-transition relation, on the set States $_{M}$. We write

$$
q \xrightarrow{\varepsilon} q^{\prime}
$$

to indicate that the pair of states $\left(q, q^{\prime}\right)$ is in this relation.

Example (with input alphabet $=\{a, b\}$):

$L(M)$, language accepted by an NFA ${ }^{\varepsilon} M$

consists of all strings \boldsymbol{u} over the alphabet $\boldsymbol{\Sigma}_{M}$ of input symbols satisfying $\boldsymbol{q}_{0} \stackrel{u}{\Rightarrow} \boldsymbol{q}$ with \boldsymbol{q}_{0} the initial state and \boldsymbol{q} some accepting state.
Here $\cdot \bar{\Rightarrow} \cdot$ is defined by:
$q \stackrel{\varepsilon}{\Rightarrow} q^{\prime}$ iff $q=q^{\prime}$ or there is a sequence $q \xrightarrow{\varepsilon} \cdots q^{\prime}$ of one or more ε-transitions in M from \boldsymbol{q} to \boldsymbol{q}^{\prime}
$\boldsymbol{q} \stackrel{a}{\Rightarrow} \boldsymbol{q}^{\prime}\left(\right.$ for $\left.a \in \Sigma_{M}\right)$ iff $\boldsymbol{q} \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{a}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} \boldsymbol{q}^{\prime}$
$q \stackrel{a b}{\Rightarrow} q^{\prime}\left(\right.$ for $\left.a, b \in \Sigma_{M}\right)$ iff $q \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{a}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{b}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} q^{\prime}$
and similarly for longer strings

Example of the subset construction

M :

$\delta_{P M}:$	a	b
$\left\{q_{0}\right\}$	\emptyset	\emptyset
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$	
$\left\{q_{2}\right\}$	$\left\{q_{1}\right\}$	\emptyset
$\left\{q_{0}, q_{1}\right\}$	\emptyset	$\left\{q_{2}\right\}$
$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$	
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
	$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$

Theorem. For each NFA ${ }^{\varepsilon} \boldsymbol{M}$ there is a DFA $\boldsymbol{P} \boldsymbol{M}$ with the same alphabet of input symbols and accepting exactly the same strings as M, i.e. with $L(P M)=L(M)$

Definition of $\boldsymbol{P} \boldsymbol{M}$ (refer to Slides 12 and 14):

- States $_{P M} \stackrel{\text { def }^{=}\left\{S \mid S \subseteq \text { States }_{M}\right\}, ~(S) ~}{=}$
- $\Sigma_{P M} \stackrel{\text { def }}{=} \Sigma_{M}$
- $S \xrightarrow{a} S^{\prime}$ in $P M$ iff $S^{\prime}=\delta_{P M}(S, a)$, where $\delta_{P M}(S, a) \stackrel{\text { def }}{=}\left\{q^{\prime} \mid \exists q \in S\left(q \stackrel{a}{\Rightarrow} q^{\prime}\right.\right.$ in $\left.\left.M\right)\right\}$
- $s_{P M} \stackrel{\text { def }}{=}\left\{q \mid s_{M} \stackrel{\varepsilon}{\Rightarrow} q\right\}$
- Accept $\boldsymbol{P}_{P M} \stackrel{\text { def }}{=}$
$\left\{S \in\right.$ States $_{P M} \mid \exists q \in S\left(q \in\right.$ Accept $\left.\left._{M}\right)\right\}$

