

- States: q_0, q_1, q_2, q_3 .
- Input symbols: *a*, *b*.
- Transitions: as indicated above.
- Start state: q_0 .
- Accepting state(s): q_3 .

consists of all strings u over its alphabet of input symbols satisfying $q_0 \xrightarrow{u} q_0 \xrightarrow{u} q$ with q_0 the start state and q some accepting state. Here

$$q_0 \stackrel{u}{
ightarrow} ^st q$$

means, if $u = a_1 a_2 \dots a_n$ say, that for some states $q_1, q_2, \dots, q_n = q$ (not necessarily all distinct) there are transitions of the form

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} q_n = q.$$

N.B.

case n = 0: $q \xrightarrow{\varepsilon} q'$ iff q = q'case n = 1: $q \xrightarrow{a} q'$ iff $q \xrightarrow{a} q'$.

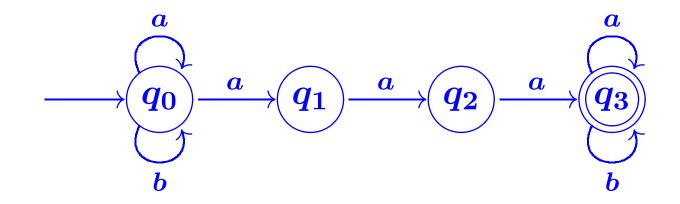
A *non-deterministic finite automaton* (NFA), M, is specified by

- a finite set $States_M$ (of **states**)
- a finite set Σ_M (the alphabet of *input symbols*)
- for each $q \in States_M$ and each $a \in \Sigma_M$, a subset $\Delta_M(q, a) \subseteq States_M$ (the set of states that can be reached from q with a single *transition* labelled a)
- an element $s_M \in States_M$ (the *start state*)
- a subset $Accept_M \subseteq States_M$ (of *accepting states*)

Example of a non-deterministic finite automaton

Input alphabet: $\{a, b\}$.

States, transitions, start state, and accepting states as shown:



The language accepted by this automaton is the same as for the automaton on Slide 10, namely

 $\{u \in \{a,b\}^* \mid u ext{ contains three consecutive } a$'s $\}$.

A deterministic finite automaton (DFA)

is an NFA M with the property that for each $q \in States_M$ and $a \in \Sigma_M$, the finite set $\Delta_M(q, a)$ contains exactly one element—call it $\delta_M(q, a)$.

Thus in this case transitions in M are essentially specified by a *next-state function*, δ_M , mapping each (state, input symbol)-pair (q, a) to the unique state $\delta_M(q, a)$ which can be reached from q by a transition labelled a:

$$q \stackrel{a}{
ightarrow} q'$$
 iff $q' = \delta_M(q,a)$

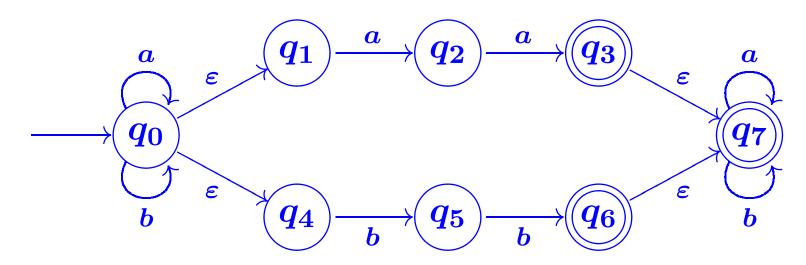
An **NFA** with ε -transitions (NFA $^{\varepsilon}$)

is specified by an NFA M together with a binary relation, called the arepsilon-transition relation, on the set $States_M$. We write

 $q \xrightarrow{\varepsilon} q'$

to indicate that the pair of states (q, q') is in this relation.

Example (with input alphabet = $\{a, b\}$):



L(M), language accepted by an NFA $^arepsilon M$

consists of all strings u over the alphabet \sum_{M} of input symbols satisfying $q_0 \stackrel{u}{\Rightarrow} q$ with q_0 the initial state and q some accepting state. Here $\cdot \stackrel{-}{\Rightarrow} \cdot$ is defined by:

 $q \stackrel{\varepsilon}{\Rightarrow} q'$ iff q = q' or there is a sequence $q \stackrel{\varepsilon}{\to} \cdots q'$ of one or more ε -transitions in M from q to q'

$$q \stackrel{a}{\Rightarrow} q'$$
 (for $a \in \Sigma_M$) iff $q \stackrel{arepsilon}{\Rightarrow} \cdot \stackrel{a}{ o} \cdot \stackrel{arepsilon}{\Rightarrow} q'$

 $q \stackrel{ab}{\Rightarrow} q'$ (for $a, b \in \Sigma_M$) iff $q \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{a}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{b}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} q'$

and similarly for longer strings

$oldsymbol{M}$:	δ_{PM} :	$oldsymbol{a}$	b
$\overset{a}{\bigcirc}$	Ø	Ø	Ø
$(q_1)^{\vee}$	$\{q_0\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
	$\{q_1\}$	$\{q_1\}$	Ø
ε	$\{q_2\}$	Ø	$\{q_2\}$
$\longrightarrow (q_0) a$	$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
ε	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
	$\{q_1,q_2\}$	$\{q_1\}$	$\{q_2\}$
42	$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
\overbrace{b}			

Theorem. For each NFA^{ε} M there is a DFA PM with the same alphabet of input symbols and accepting exactly the same strings as M, i.e. with L(PM) = L(M)

Definition of \mathbf{PM} (refer to Slides 12 and 14):

- $States_{PM} \stackrel{\mathrm{def}}{=} \{S \mid S \subseteq States_M\}$
- $\Sigma_{PM} \stackrel{\mathrm{def}}{=} \Sigma_M$
- $S \xrightarrow{a} S'$ in PM iff $S' = \delta_{PM}(S, a)$, where $\delta_{PM}(S, a) \stackrel{\text{def}}{=} \{q' \mid \exists q \in S \ (q \xrightarrow{a} q' \text{ in } M)\}$
- $s_{PM} \stackrel{\mathrm{def}}{=} \{q \mid s_M \stackrel{\varepsilon}{\Rightarrow} q\}$
- $Accept_{PM} \stackrel{\text{def}}{=} \{S \in States_{PM} \mid \exists q \in S \ (q \in Accept_M)\}$