Regular Languages
and Finite Automata

8 lectures for CST Part IA

Prof. Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk, WGB FC08

Course web page:
www.cl.cam.ac.uk/teaching/1213/RLFA/

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type
1s *

and press return?

Suppose the current directory contains files called regfla.tex,
regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What
happens if you type

1s % .aux

and press return?

Alphabets

An alphabet is specified by giving a finite set, 3J, whose elements are
called symbols. For us, any set qualifies as a possible alphabet, so long
as it is finite.

Examples:

31 =40,1,2,3,4,5,6,7,8,9} — 10-element set of decimal digits.
3o ={a,b,c,...,x,y, z} — 26-element set of lower-case characters
of the English language.

Y3 ={S|S C X;}—21%element set of all subsets of the alphabet of
decimal digits.

Non-example:
N = {0,1,2,3,...} — setof all non-negative whole numbers is not an
alphabet, because it is infinite.

Strings over an alphabet

A string of length . (> 0) over an alphabet 3J is just an ordered
n-tuple of elements of 2, written without punctuation.

Example: if X = {a, b, c}, then a, ab, aac, and bbac are strings over
of lengths one, two, three and four respectively.

def
>* = setof all strings over X of any finite length.

N.B. there is a unique string of length zero over 3., called the null string

(or empty string) and denoted | € | (no matter which 22 we are talking
about).

Concatenation of strings

The concatenation of two strings w, v € Y™ is the string uwv obtained
by joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab,
uu = abab and wv = cadra.

This generalises to the concatenation of three or more strings.
E.g. uvwuv = abracadabra.

Regular expressions over an alphabet 3.

® cach symbol a € 3. is a regular expression

® £ is a reqgular expression

e () is a regular expression

e if and s are regular expressions, then so is (7|s)
® if and s are regular expressions, then sois rs

e if r is a regular expression, then so is (7)™

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume &, @, (,), |, and * are not symbols in X2.)

Matching strings to regular expressions

u matchesa € X iffu = a

u matchese iffu = ¢

no string matches ()

u matches 7| s iff u matches either 7 or s

u matches rs iff it can be expressed as the concatenation of two
strings, ©u = vw, with v matching 7 and w matching s

u matches r* iff either u = &, or u matches 7, or u can be
expressed as the concatenation of two or more strings, each of which
matches r

Examples of matching, with 3 = {0, 1}

0|1 is matched by each symbol in X

1(0|1)* is matched by any string in 3™ that starts with a ‘1’

((0]1)(0
(0]1)*(0

1))™* is matched by any string of even length in 2*

1)* is matched by any string in 32*

(£]0)(g]|1)|11 is matched by just the strings £, 0, 1, 01, and 11

(1|0 is just matched by O

Languages

A (formal) lJanguage L over an alphabet 3 is just a set of strings in 22™.
Thus any subset L C 3* determines a language over ..
The language determined by a regular expression r over 2. is

L(r) def {u € ¥* | u matches }.

Two regular expressions 77 and s (over the same alphabet) are

equivalentiff L(r) and L(s) are equal sets (i.e. have exactly the same
members).

Some questions

(a) Is there an algorithm which, given a string « and a regular expression
T (over the same alphabet), computes whether or not «w matches r?

(b) In formulating the definition of regular expressions, have we missed
out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions 7 and s
(over the same alphabet), computes whether or not they are
equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(7)?

