Regular Languages and Finite Automata

8 lectures for CST Part IA

Prof. Andrew Pitts Andrew.Pitts@cl.cam.ac.uk, WGB FC08

Course web page:

www.cl.cam.ac.uk/teaching/1213/RLFA/

What happens if, at a Unix/Linux shell prompt, you type

ls *

and press return?

Suppose the current directory contains files called regfla.tex, regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What happens if you type

ls *.aux

and press return?

An *alphabet* is specified by giving a finite set, Σ , whose elements are called *symbols*. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

$$\begin{split} \Sigma_1 &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} - 10 \text{-element set of decimal digits.} \\ \Sigma_2 &= \{a, b, c, \dots, x, y, z\} - 26 \text{-element set of lower-case characters} \\ \text{of the English language.} \\ \Sigma_3 &= \{S \mid S \subseteq \Sigma_1\} - 2^{10} \text{-element set of all subsets of the alphabet of} \\ \text{decimal digits.} \end{split}$$

Non-example:

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ — set of all non-negative whole numbers is not an alphabet, because it is infinite.

Strings over an alphabet

A string of length $n \geq 0$ over an alphabet Σ is just an ordered *n*-tuple of elements of Σ , written without punctuation.

Example: if $\Sigma = \{a, b, c\}$, then a, ab, aac, and bbac are strings over Σ of lengths one, two, three and four respectively.

 $\Sigma^* \stackrel{\text{def}}{=}$ set of all strings over Σ of any finite length.

N.B. there is a unique string of length zero over Σ , called the *null string* (or *empty string*) and denoted ε (no matter which Σ we are talking about).

Concatenation of strings

The *concatenation* of two strings $u, v \in \Sigma^*$ is the string uv obtained by joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab, uu = abab and wv = cadra.

This generalises to the concatenation of three or more strings. E.g. uvwuv = abracadabra.

Regular expressions over an alphabet Σ

- each symbol $a \in \Sigma$ is a regular expression
- ε is a regular expression
- Ø is a regular expression
- if r and s are regular expressions, then so is (r|s)
- if *r* and *s* are regular expressions, then so is *rs*
- if r is a regular expression, then so is $(r)^*$

Every regular expression is built up inductively, by *finitely many* applications of the above rules.

(N.B. we assume ε , \emptyset , (,), , and * are not symbols in Σ .)

- u matches $a \in \Sigma$ iff u = a
- u matches ε iff $u = \varepsilon$
- no string matches Ø
- u matches $r \mid s$ iff u matches either r or s
- u matches rs iff it can be expressed as the concatenation of two strings, u = vw, with v matching r and w matching s
- u matches r^* iff either $u = \varepsilon$, or u matches r, or u can be expressed as the concatenation of two or more strings, each of which matches r

Examples of matching, with $\Sigma = \{0, 1\}$

- 0 | 1 is matched by each symbol in Σ
- $1(0|1)^*$ is matched by any string in Σ^* that starts with a '1'
- $((0|1)(0|1))^*$ is matched by any string of even length in Σ^*
- $(0|1)^*(0|1)^*$ is matched by any string in Σ^*
- $(\varepsilon|0)(\varepsilon|1)|11$ is matched by just the strings ε , 0, 1, 01, and 11
- 010 is just matched by 0

Languages

A (formal) language L over an alphabet Σ is just a set of strings in Σ^* . Thus any subset $L \subseteq \Sigma^*$ determines a language over Σ .

The *language determined by a regular expression* r over Σ is

$$L(r) \stackrel{ ext{def}}{=} \{ u \in \Sigma^* \mid u ext{ matches } r \}.$$

Two regular expressions r and s (over the same alphabet) are *equivalent* iff L(r) and L(s) are equal sets (i.e. have exactly the same members).

Some questions

- (a) Is there an algorithm which, given a string u and a regular expression r (over the same alphabet), computes whether or not u matches r?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
- (c) Is there an algorithm which, given two regular expressions *r* and *s* (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)
- (d) Is every language of the form L(r)?