Regular Languages and Finite Automata

8 lectures for CST Part IA

Prof. Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk, WGB FC08
Course web page:
www.cl.cam.ac.uk/teaching/1213/RLFA/

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type

$$
\text { ls } *
$$

and press return?
Suppose the current directory contains files called regfla.tex, regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What happens if you type

$$
\text { ls } * \text {.aux }
$$

and press return?

Alphabets

An alphabet is specified by giving a finite set, $\boldsymbol{\Sigma}$, whose elements are called symbols. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

$\Sigma_{1}=\{0,1,2,3,4,5,6,7,8,9\}-10$-element set of decimal digits.
$\Sigma_{2}=\{a, b, c, \ldots, x, y, z\}-26$-element set of lower-case characters of the English language.
$\Sigma_{3}=\left\{S \mid S \subseteq \Sigma_{1}\right\}-2^{10}$-element set of all subsets of the alphabet of decimal digits.

Non-example:

$\mathbb{N}=\{0,1,2,3, \ldots\}$ - set of all non-negative whole numbers is not an alphabet, because it is infinite.

Strings over an alphabet

A string of length $\boldsymbol{n}(\geq \mathbf{0})$ over an alphabet $\boldsymbol{\Sigma}$ is just an ordered \boldsymbol{n}-tuple of elements of $\boldsymbol{\Sigma}$, written without punctuation.

Example: if $\Sigma=\{a, b, c\}$, then $a, a b, a a c$, and $b b a c$ are strings over Σ of lengths one, two, three and four respectively.

$$
\Sigma^{*} \stackrel{\text { def }}{=} \text { set of all strings over } \Sigma \text { of any finite length. }
$$

N.B. there is a unique string of length zero over Σ, called the null string (or empty string) and denoted ε (no matter which Σ we are talking about).

Concatenation of strings

The concatenation of two strings $u, v \in \Sigma^{*}$ is the string $\boldsymbol{u v}$ obtained by joining the strings end-to-end.

Examples: If $u=a b, v=r a$ and $w=c a d$, then $v u=r a a b$, $u u=a b a b$ and $w v=c a d r a$.

This generalises to the concatenation of three or more strings.
E.g. uvwuv =abracadabra.

Regular expressions over an alphabet Σ

- each symbol $\boldsymbol{a} \in \boldsymbol{\Sigma}$ is a regular expression
- ε is a regular expression
- \emptyset is a regular expression
- if r and s are regular expressions, then so is $(r \mid s)$
- if r and s are regular expressions, then so is $r \boldsymbol{s}$
- if \boldsymbol{r} is a regular expression, then so is $(\boldsymbol{r})^{*}$

Every regular expression is built up inductively, by finitely many applications of the above rules.
(N.B. we assume $\varepsilon, \emptyset,(),, \mid$, and * are not symbols in Σ.)

Matching strings to regular expressions

- \boldsymbol{u} matches $\boldsymbol{a} \in \boldsymbol{\Sigma}$ iff $\boldsymbol{u}=\boldsymbol{a}$
- u matches ε iff $u=\varepsilon$
- no string matches \emptyset
- \boldsymbol{u} matches $\boldsymbol{r} \mid \boldsymbol{s}$ iff \boldsymbol{u} matches either \boldsymbol{r} or \boldsymbol{s}
- \boldsymbol{u} matches $\boldsymbol{r} \boldsymbol{s}$ iff it can be expressed as the concatenation of two strings, $\boldsymbol{u}=\boldsymbol{v} \boldsymbol{w}$, with \boldsymbol{v} matching \boldsymbol{r} and \boldsymbol{w} matching \boldsymbol{s}
- \boldsymbol{u} matches \boldsymbol{r}^{*} iff either $\boldsymbol{u}=\varepsilon$, or \boldsymbol{u} matches \boldsymbol{r}, or \boldsymbol{u} can be expressed as the concatenation of two or more strings, each of which matches r

Examples of matching, with $\Sigma=\{0,1\}$

- $0 \mid 1$ is matched by each symbol in Σ
- $1(0 \mid 1)^{*}$ is matched by any string in Σ^{*} that starts with a ' 1 '
- ($(0 \mid 1)(0 \mid 1))^{*}$ is matched by any string of even length in Σ^{*}
- $(0 \mid 1)^{*}(0 \mid 1)^{*}$ is matched by any string in Σ^{*}
- $(\varepsilon \mid 0)(\varepsilon \mid 1) \mid 11$ is matched by just the strings $\varepsilon, 0,1,01$, and 11
- $\emptyset 1 \mid 0$ is just matched by 0

Languages

A (formal) language L over an alphabet $\boldsymbol{\Sigma}$ is just a set of strings in $\boldsymbol{\Sigma}^{*}$. Thus any subset $L \subseteq \Sigma^{*}$ determines a language over Σ.

The language determined by a regular expression r over Σ is

$$
L(r) \stackrel{\text { def }}{=}\left\{u \in \Sigma^{*} \mid u \text { matches } r\right\}
$$

Two regular expressions \boldsymbol{r} and s (over the same alphabet) are equivalent iff $L(r)$ and $L(s)$ are equal sets (i.e. have exactly the same members).

Some questions

(a) Is there an algorithm which, given a string \boldsymbol{u} and a regular expression \boldsymbol{r} (over the same alphabet), computes whether or not \boldsymbol{u} matches \boldsymbol{r} ?
(b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
(c) Is there an algorithm which, given two regular expressions r and s (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)
(d) Is every language of the form $L(r)$?

