
Regular Languages

and Finite Automata

8 lectures for CST Part IA

Prof. Andrew Pitts

Andrew.Pitts@cl.cam.ac.uk, WGB FC08

Course web page:

www.cl.cam.ac.uk/teaching/1213/RLFA/

0

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type

ls ∗

and press return?

Suppose the current directory contains files called regfla.tex,

regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What

happens if you type

ls ∗ .aux

and press return?

1

Alphabets

An alphabet is specified by giving a finite set, Σ, whose elements are

called symbols. For us, any set qualifies as a possible alphabet, so long

as it is finite.

Examples:

Σ1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} — 10-element set of decimal digits.

Σ2 = {a, b, c, . . . , x, y, z} — 26-element set of lower-case characters

of the English language.

Σ3 = {S | S ⊆ Σ1} — 210-element set of all subsets of the alphabet of

decimal digits.

Non-example:

N = {0, 1, 2, 3, . . . } — set of all non-negative whole numbers is not an

alphabet, because it is infinite.

2

Strings over an alphabet

A string of length n (≥ 0) over an alphabet Σ is just an ordered

n-tuple of elements of Σ, written without punctuation.

Example: if Σ = {a, b, c}, then a, ab, aac, and bbac are strings over Σ

of lengths one, two, three and four respectively.

Σ∗ def
= set of all strings over Σ of any finite length.

N.B. there is a unique string of length zero over Σ, called the null string

(or empty string) and denoted ε (no matter which Σ we are talking

about).

3

Concatenation of strings

The concatenation of two strings u, v ∈ Σ∗ is the string uv obtained

by joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab,

uu = abab and wv = cadra.

This generalises to the concatenation of three or more strings.

E.g. uvwuv = abracadabra.

4

Regular expressions over an alphabet Σ

• each symbol a ∈ Σ is a regular expression

• ε is a regular expression

• ∅ is a regular expression

• if r and s are regular expressions, then so is (r|s)

• if r and s are regular expressions, then so is rs

• if r is a regular expression, then so is (r)∗

Every regular expression is built up inductively, by finitely many

applications of the above rules.

(N.B. we assume ε, ∅, (,), |, and ∗ are not symbols in Σ.)

5

Matching strings to regular expressions

• u matches a ∈ Σ iff u = a

• u matches ε iff u = ε

• no string matches ∅

• u matches r|s iff u matches either r or s

• u matches rs iff it can be expressed as the concatenation of two

strings, u = vw, with v matching r and w matching s

• u matches r∗ iff either u = ε, or u matches r, or u can be

expressed as the concatenation of two or more strings, each of which

matches r

6

Examples of matching, with Σ = {0, 1}

• 0|1 is matched by each symbol in Σ

• 1(0|1)∗ is matched by any string in Σ∗ that starts with a ‘1’

• ((0|1)(0|1))∗ is matched by any string of even length in Σ∗

• (0|1)∗(0|1)∗ is matched by any string in Σ∗

• (ε|0)(ε|1)|11 is matched by just the strings ε, 0, 1, 01, and 11

• ∅1|0 is just matched by 0

7

Languages

A (formal) language L over an alphabet Σ is just a set of strings in Σ∗.

Thus any subset L ⊆ Σ∗ determines a language over Σ.

The language determined by a regular expression r over Σ is

L(r)
def
= {u ∈ Σ∗ | u matches r}.

Two regular expressions r and s (over the same alphabet) are

equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same

members).

8

Some questions

(a) Is there an algorithm which, given a string u and a regular expression

r (over the same alphabet), computes whether or not u matches r?

(b) In formulating the definition of regular expressions, have we missed

out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions r and s
(over the same alphabet), computes whether or not they are

equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

9

