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Outline
I Elementary probability theory (2 lectures)

I Preamble on set theory, probability spaces, random variables,
discrete/continuous distributions, means and variances,
independence, conditional probabilities, Bayes’s theorem.

I Probability generating functions (1 lecture)
I Definitions and properties; use in calculating moments of random

variables and for finding the distribution of sums of independent
random variables.

I Multivariate distributions and independence (1 lecture)
I Random vectors and independence; joint and marginal density

functions; variance, covariance and correlation; conditional density
functions.

I Elementary stochastic processes (2 lectures)
I Simple random walks; recurrence and transience; the Gambler’s

Ruin Problem and solution using difference equations.
I Case studies (2 lectures)

I A selection of illustrative applications in Computer Science.

CST IA Prob 2012/13 (2)



Reference books
(*) Grimmett, G. & Welsh, D.
Probability: an introduction.
Oxford University Press, 1986

Ross, Sheldon M.
Probability Models for Computer Science.
Harcourt/Academic Press, 2002

CST IA Prob 2012/13 (3)



Elementary probability theory
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Preamble on set theory
Our approach to Probability will neccessitate formulating concepts
based on notions of sets of random outcomes and so we will begin
with a brief look at some basic ideas of sets.
Mathematically, a set is just a collection of items. The items may be of
any type and there need be no notion of ordering between the items.
However, what is essential is the notion of membership. Any
particular item, a, say, may be a member of some set A and this is
written a ∈ A.
Sets can be specified either by a property that all members need to
satisfy or by explicitly listing all the items. For example,
{even numbers}, {odd numbers}, {1,2,3}, {2,4,6, . . .}
and {1,3,5, . . .} are all examples of sets.
The empty set {} contains no members and is often written as /0.
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Preamble on set theory, ctd
Given two sets A and B it may be that all the items in A are also in B.
In this case, we say that A is a subset of B and that B is a superset
of A. We use the notation A⊂ B to denote the subset relation
between sets. If A⊂ B and B ⊂ A then the two sets are equal,
written A = B. We can write A⊆ B if we want to emphasize that A
and B may be equal as well as A⊂ B.
We may define various operations to combine sets. The intersection
of two sets A and B, written A∩B, is set of items which are members
of both A and B. The union of A and B, written A∪B, is the set of
items which are members of either A or B (or both).
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Preamble on set theory, ctd
The complement of a set A is the collection of items which are not
members of A and we write a 6∈ A when item a is not a member of A.
The complement of A can be written as

Ac = {a |a 6∈ A} .

The complement is taken relative to some universal set Ω, say, of
possible items of interest. The difference between two sets A and B,
written A\B is defined as

A\B = {a ∈ A |a 6∈ B} .

So then Ac = Ω\A.
Finally, note that the set A = {a} is a set containing one item a and so
is different from the item a itself. If we consider the set B = {a,b}
consisting of the two distinct items a and b then we can say that a ∈ B
and that A⊂ B. We can not say that A ∈ B or that a⊂ B.
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Random experiments
We will describe randomness by conducting
experiments (or trials) with uncertain outcomes.
The set of all possible outcomes of an experiment is
called the sample space and is denoted by Ω.

Identify random events with particular subsets of Ω and write

F = {E |E ⊆ Ω is a random event}

for the collection of possible events.
For each such random event, E ∈F , we will associate a number
called its probability, written P(E) ∈ [0,1].
Before introducing probabilities we need to look closely at our notion
of collections of random events.
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Event spaces
We formalize the notion of an event space, F , by requiring the
following to hold.

Definition (Event space)

1. F is non-empty
2. E ∈F ⇒ Ω\E ∈F

3. (∀i ∈ I .Ei ∈F )⇒∪i∈IEi ∈F

Example
Ω any set and F = P(Ω), the power set of Ω.

Example
Ω any set with some event E ′ ⊂ Ω and F = { /0,E ′,Ω\E ′,Ω}.
Note that Ω\E is often written using the shorthand Ec for the
complement of E with respect to Ω.
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Probability spaces
Given an experiment with outcomes in a sample space Ω with an
event space F we associate probabilities to events by defining a
probability function P : F → R as follows.

Definition (Probability function)

1. ∀E ∈F .P(E)≥ 0
2. P(Ω) = 1 and P( /0) = 0
3. Ei ∈F for i ∈ I disjoint (that is, Ei ∩Ej = /0 for i 6= j) then

P(∪i∈IEi ) = ∑
i∈I

P(Ei ) .

We call the triple (Ω,F ,P) a probability space.
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Examples of probability spaces
I Ω any set with some event E ′ ⊂ Ω (E ′ 6= /0, E ′ 6= Ω).

Take F = { /0,E ′,Ω\E ′,Ω} as before and define the probability
function P(E)by

P(E) =


0 E = /0
p E = E ′

1−p E = Ω\E ′

1 E = Ω

for any 0≤ p ≤ 1.
I Ω = {ω1,ω2, . . . ,ωn} with F = P(Ω) and probabilities given for

all E ∈F by

P(E) =
|E |
n

.

I For a six-sided fair die Ω = {1,2,3,4,5,6} we take F = P(Ω)
and

P({i}) =
1
6

i = 1,2, . . . ,6 .
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Examples of probability spaces, ctd

Ω

E
ω1

ω2

ω3
ω4

I More generally, for each
outcome ωi ∈ Ω (i = 1, . . . ,n) assign a
value pi where pi ≥ 0 and ∑

n
i=1 pi = 1.

If F = P(Ω) then take

P(E) = ∑
i :ωi∈E

pi ∀E ∈F .
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Conditional probabilities

Ω

E1 E2

Given a probability space (Ω,F ,P) and
two events E1,E2 ∈F how does
knowledge that the random event E2, say,
has occurred influence the probability
that E1 has also occurred?
This question leads to the notion of
conditional probability.

Definition (Conditional probability)
If P(E2) > 0, define the conditional probability, P(E1|E2), of E1
given E2 by

P(E1|E2) =
P(E1∩E2)

P(E2)
.

Note that P(E2|E2) = 1.
Exercise: check that for any E ′ ∈F such that P(E ′) > 0
then (Ω,F ,Q) is a probability space where Q : F → R is defined by

Q(E) = P(E |E ′) ∀E ∈F .
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Independent events
Given a probability space (Ω,F ,P) we can define independence
between random events as follows.

Definition (Independent events)
Two events, E1,E2 ∈F are independent if

P(E1∩E2) = P(E1)P(E2)

Otherwise, the events are dependent. Note that if E1 and E2 are
independent events then

P(E1|E2) = P(E1)

P(E2|E1) = P(E2) .
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Independence of multiple events
More generally, a collection of events {Ei | i ∈ I} are independent
events if for all subsets J of I

P(∩j∈JEj ) = ∏
j∈J

P(Ej ) .

When this holds just for all those subsets J such that |J|= 2 we have
pairwise independence.
Note that pairwise independence does not imply independence
(unless |I|= 2).
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Venn diagrams
John Venn 1834–1923

Example (|I|= 3 events)
E1,E2,E3 are independent events if

P(E1∩E2) = P(E1)P(E2)

P(E1∩E3) = P(E1)P(E3)

P(E2∩E3) = P(E2)P(E3)

P(E1∩E2∩E3) = P(E1)P(E2)P(E3)
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Bayes’ theorem
Thomas Bayes (1702–1761)

Theorem (Bayes’ theorem)
If E1 and E2 are two events
with P(E1) > 0 and P(E2) > 0 then

P(E1|E2) =
P(E2|E1)P(E1)

P(E2)
.

Proof.
We have that

P(E1|E2)P(E2) = P(E1∩E2) = P(E2∩E1) = P(E2|E1)P(E1) .

Thus Bayes’ theorem provides a way to reverse the order of
conditioning.
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Partitions

Ω

E1 E2

E3 E4

E5

Given a probability space (Ω,F ,P) define a
partition of Ω as follows.

Definition (Partition)
A partition of Ω is a collection of disjoint
events {Ei ∈F | i ∈ I} with

∪i∈IEi = Ω .

We then have the following theorem (a.k.a. the law of total
probability).

Theorem (Partition theorem)
If {Ei ∈F | i ∈ I} is a partition of Ω and P(Ei ) > 0 for all i ∈ I then

P(E) = ∑
i∈I

P(E |Ei )P(Ei ) ∀E ∈F .
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Proof of partition theorem
We prove the partition theorem as follows.

Proof.

P(E) = P(E ∩ (∪i∈IEi ))

= P(∪i∈I (E ∩Ei ))

= ∑
i∈I

P(E ∩Ei )

= ∑
i∈I

P(E |Ei )P(Ei )
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Bayes’ theorem and partitions
A (slight) generalization of Bayes’ theorem can be stated as follows
combining Bayes’ theorem with the partition theorem.

P(Ei |E) =
P(E |Ei )P(Ei )

∑j∈I P(E |Ej )P(Ej )
∀ i ∈ I

where {Ei ∈F | i ∈ I} forms a partition of Ω.

Ω

E1

E2 = Ω\E1

As a special case consider the
partition {E1,E2 = Ω\E1}.

Then we have

P(E1|E) =
P(E |E1)P(E1)

P(E |E1)P(E1) +P(E |Ω\E1)P(Ω\E1)
.

CST IA Prob 2012/13 (20)



Bayes’ theorem example
Suppose that you have a good game of table
football two times in three, otherwise a poor
game.
Your chance of scoring a goal is 3/4 in a good
game and 1/4 in a poor game.

What is your chance of scoring a goal in any given game?
Conditional on having scored in a game, what is the chance that you
had a good game?
So we know that

I P(Good) = 2/3,
I P(Poor) = 1/3,
I P(Score|Good) = 3/4,
I P(Score|Poor) = 1/4.
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Bayes’ theorem example, ctd
Thus, noting that {Good,Poor} forms a partition of the sample space
of outcomes,

P(Score) = P(Score|Good)P(Good) +P(Score|Poor)P(Poor)
= (3/4)× (2/3) + (1/4)× (1/3) = 7/12 .

Then by Bayes’ theorem we have that

P(Good|Score) =
P(Score|Good)P(Good)

P(Score)
=

(3/4)× (2/3)

(7/12)
= 6/7.
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Random variables
Given a probability space (Ω,F ,P) we may wish to work not with the
outcomes ω ∈ Ω directly but with some real-valued function of them,
say using the function X : Ω→ R. (Alternative to writing X ⊆ Ω×R.)
This gives us the notion of a random variable (RV) measuring, for
example, temperatures, profits, goals scored or minutes late.
We shall first consider the case of discrete random variables.

Definition (Discrete random variable)
A function X : Ω→ R is a discrete random variable on the probability
space (Ω,F ,P) if

1. the image set, Im(X ) = {x ∈ R |∃ω ∈ Ω .X (ω) = x}, is a
countable subset of R

2. {ω ∈ Ω |X (ω) = x} ∈F ∀x ∈ R

The first condition ensures discreteness of the values obtained. The
second condition says that the set of outcomes ω ∈ Ω mapped to a
common value, x , say, by the function X must be an event E , say, that
is in the event space F (so that we can actually associate a
probability P(E) to it).
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Probability mass functions
Suppose that X is a discrete RV. We shall write

P(X = x) = P({ω ∈ Ω |X (ω) = x}) ∀x ∈ R .

So that

∑
x∈Im(X )

P(X = x) = P(∪x∈Im(X ){ω ∈ Ω |X (ω) = x}) = P(Ω) = 1

and P(X = x) = 0 if x 6∈ Im(X ). It is usual to abbreviate all this by
writing

∑
x∈R

P(X = x) = 1 .

The RV X is then said to have probability mass function P(X = x)
thought of as a function x ∈ R→ [0,1]. The probability mass function
describes the distribution of probabilities over the collection of
outcomes for the RV X .
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Examples of discrete distributions

Example (Bernoulli distribution)

k

P(X = k)

0

0.25

0.5

0.75

1

0 1

e.g. p = 0.75

Here Im(X ) = {0,1} and for given p ∈ [0,1]

P(X = k) =

{
p k = 1
1−p k = 0 .

RV, X Parameters Im(X ) Mean Variance
Bernoulli p ∈ [0,1] {0,1} p p(1−p)
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Examples of discrete distributions, ctd

Example (Binomial distribution, Bin(n,p))

k

P(X = k)

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

e.g. n = 10,p = 0.5

Here Im(X ) = {0,1, . . . ,n} for some positive
integer n and given p ∈ [0,1]

P(X = k) =

(
n
k

)
pk (1−p)n−k ∀k ∈ {0,1, . . . ,n} .

RV, X Parameters Im(X ) Mean Variance
Bin(n,p) n ∈ {1,2, . . .} {0,1, . . . ,n} np np(1−p)

p ∈ [0,1]

We use the notation
X ∼ Bin(n,p)

as a shorthand for the statement that the RV X is distributed
according to stated Binomial distribution. We shall use this shorthand
notation for our other named distributions.
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Examples of discrete distributions, ctd

Example (Geometric distribution, Geo(p))

k

P(X = k)

1.0

0.75

0.5

0.25

0
1 2 3 4 5 6 7 8 9 10

e.g. p = 0.75

Here Im(X ) = {1,2, . . .} and 0 < p ≤ 1

P(X = k) = p(1−p)k−1 ∀k ∈ {1,2, . . .} .

RV, X Parameters Im(X ) Mean Variance
Geo(p) 0 < p ≤ 1 {1,2, . . .} 1

p
1−p
p2

Notationally we write
X ∼Geo(p) .

Beware possible confusion: some authors prefer to define our X −1
as a ‘Geometric’ RV!
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Examples of discrete distributions, ctd

Example (Uniform distribution, U(1,n))

k

P(X = k)

1
6

1 2 3 4 5 6

e.g. n = 6

Here n is some positive integer and

P(X = k) =
1
n

∀k ∈ {1,2, . . . ,n} .

RV, X Parameters Im(X ) Mean Variance
U(1,n) n ∈ {1,2, . . .} {1,2, . . . ,n} n+1

2
n2−1

12

Notationally we write
X ∼ U(1,n) .
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Examples of discrete distributions, ctd

Example (Poisson distribution, Pois(λ ))

k

P(X = k)
0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

λ = 1

λ = 5

Here Im(X ) = {0,1, . . .} and λ > 0

P(X = k) =
λ k e−λ

k !
∀k ∈ {0,1, . . .} .

RV, X Parameters Im(X ) Mean Variance
Pois(λ ) λ > 0 {0,1, . . .} λ λ

Notationally we write
X ∼ Pois(λ ) .
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Expectation
One way to summarize the distribution of some RV, X , would be to
construct a weighted average of the observed values, weighted by
the probabilities of actually observing these values. This is the idea of
expectation defined as follows.

Definition (Expectation)
The expectation, E(X ), of a discrete RV X is defined as

E(X ) = ∑
x∈Im(X )

xP(X = x)

so long as this sum is (absolutely) convergent (that is,
∑x∈Im(X ) |xP(X = x)|< ∞).
The expectation of a RV X is also known as the expected value, the
mean, the first moment or simply the average.
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Expectations and transformations
Suppose that X is a discrete RV and g : R→ R is some
transformation. We can check that Y = g(X ) is again a RV defined
by Y (ω) = g(X )(ω) = g(X (ω)).

Theorem
We have that

E(g(X )) = ∑
x

g(x)P(X = x)

whenever the sum is absolutely convergent.

Proof.

E(g(X )) = E(Y ) = ∑
y∈g(Im(X ))

yP(Y = y)

= ∑
y∈g(Im(X ))

y ∑
x∈Im(X ):g(x)=y

P(X = x)

= ∑
x∈Im(X )

g(x)P(X = x)
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Expectation is linear
Suppose that X is a discrete RV and consider the special case
where g : R→ R is given by the transformation: g(x) = ax + b with a
and b any real numbers.
We have that

E(aX + b)) = ∑
x

(ax + b)P(X = x)

= ∑
x

axP(X = x) +∑
x

bP(X = x)

= a∑
x

xP(X = x) + b∑
x
P(X = x)

= aE(X ) + b .
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Variance
For a discrete RV X with expected value E(X ) we define the variance,
written Var(X ), as follows.

Definition (Variance)

Var(X ) = E
(

(X −E(X ))2
)

Thus, writing µ = E(X ) and taking g(x) = (x −µ)2

Var(X ) = E
(

(X −E(X ))2
)

= E(g(X )) = ∑
x

(x −µ)2P(X = x) .

Just as the expected value summarizes the location of outcomes
taken by the RV X , the variance measures the dispersion of X about
its expected value.
The standard deviation of a RV X is defined as +

√
Var(X ).

Note that E(X ) and Var(X ) are real numbers not RVs.
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First and second moments of random variables
Just as the expectation or mean, E(X ), is called the first moment of
the RV X , E(X 2) is called the second moment of X .
The variance Var(X ) = E

(
(X −E(X ))2) is called the second central

moment of X since it measures the dispersion in the values of X
centred about their mean value.
Note that we have the following property where a,b ∈ R.

Var(aX + b) = E
(

(aX + b−E(aX + b))2
)

= E
(

(aX + b−aE(X )−b)2
)

= E
(

a2(X −E(X ))2
)

= a2Var(X ) .
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Calculating variances
Note that we can expand our expression for the variance where again
we use µ = E(X ) as follows

Var(X ) = ∑
x

(x −µ)2P(X = x)

= ∑
x

(x2−2µx + µ
2)P(X = x)

= ∑
x

x2P(X = x)−2µ ∑
x

xP(X = x) + µ
2
∑
x
P(X = x)

= E(X 2)−2µ
2 + µ

2

= E(X 2)−µ
2

= E(X 2)− (E(X ))2 .

This useful result determines the second central moment of a RV X in
terms of the first and second moments of X . This usually is the best
method to calculate the variance.
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An example of calculating means and variances

Example (Bernoulli)
The expected value is given by

E(X ) = ∑
x

xP(X = x)

= 0×P(X = 0) + 1×P(X = 1)

= 0× (1−p) + 1×p = p .

In order to calculate the variance first calculate the second
moment, E(X 2)

E(X 2) = ∑
x

x2P(X = x)

= 02×P(X = 0) + 12×P(X = 1) = p .

Then the variance is given by

Var(X ) = E(X 2)− (E(X ))2 = p−p2 = p(1−p) .
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Bivariate random variables
Given a probability space (Ω,F ,P), we may have two RVs, X and Y ,
say. We can then use a joint probability mass function

P(X = x ,Y = y) = P({ω ∈ Ω |X (ω) = x}∩{ω ∈ Ω |Y (ω) = y})

for all x ,y ∈ R.
We can recover the individual probability mass functions for X and Y
as follows

P(X = x) = P({ω ∈ Ω |X (ω) = x})
= P

(
∪y∈Im(Y ) ({ω ∈ Ω |X (ω) = x}∩{ω ∈ Ω |Y (ω) = y})

)
= ∑

y∈Im(Y )

P(X = x ,Y = y) .

Similarly,
P(Y = y) = ∑

x∈Im(X )

P(X = x ,Y = y) .
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Transformations of random variables
If g : R2→ R then we get a similar result to that obtained in the
univariate case

E(g(X ,Y )) = ∑
x∈Im(X )

∑
y∈Im(Y )

g(x ,y)P(X = x ,Y = y) .

This idea can be extended to probability mass functions in the
multivariate case with three or more RVs.
The linear transformation occurs frequently and is given
by g(x ,y) = ax + by + c where a,b,c ∈ R. In this case we find that

E(aX + bY + c) = ∑
x

∑
y

(ax + by + c)P(X = x ,Y = y)

= a∑
x

xP(X = x) + b∑
y

yP(Y = y) + c

= aE(X ) + bE(Y ) + c .
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Independence of random variables
We have defined independence for events and can use the same
idea for pairs of RVs X and Y .

Definition
Two RVs X and Y are independent if {ω ∈ Ω |X (ω) = x}
and {ω ∈ Ω |Y (ω) = y} are independent for all x ,y ∈ R.
Thus, if X and Y are independent

P(X = x ,Y = y) = P(X = x)P(Y = y) .

If X and Y are independent discrete RV with expected values E(X )
and E(Y ) respectively then

E(XY ) = ∑
x

∑
y

xyP(X = x ,Y = y)

= ∑
x

∑
y

xyP(X = x)P(Y = y)

= ∑
x

xP(X = x)∑
y

yP(Y = y)

= E(X )E(Y ) .
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Variance of sums of RVs and Covariance
Given a pair of RVs X and Y consider the variance of their sum X + Y

Var(X + Y ) = E
(

((X + Y )−E(X + Y ))2
)

= E
(

((X −E(X )) + (Y −E(Y )))2
)

= E((X −E(X ))2) + 2E((X −E(X ))(Y −E(Y )))+

E((Y −E(Y ))2)

= Var(X ) + 2Cov(X ,Y ) + Var(Y )

where the covariance of X and Y is given by

Cov(X ,Y ) = E((X −E(X ))(Y −E(Y )))

= E(XY )−E(X )E(Y ) .

So, if X and Y are independent RV then E(XY ) = E(X )E(Y ) and
so Cov(X ,Y ) = 0 and we have that

Var(X + Y ) = Var(X ) + Var(Y ) .

Notice also that if Y = X then Cov(X ,X ) = Var(X ).
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Covariance and correlation
The covariance of two RVs can be used as a measure of dependence
but it is not invariant to a change of units. For this reason we define
the correlation coefficient of two RVs as follows.

Definition (Correlation coefficient)
The correlation coefficient, ρ(X ,Y ), of two RVs X and Y is given by

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )

whenever the variances exist and the product Var(X )Var(Y ) 6= 0.
It may further be shown that we always have

−1≤ ρ(X ,Y )≤ 1 .

We have seen that when X and Y are independent
then Cov(X ,Y ) = 0 and so ρ(X ,Y ) = 0. When ρ(X ,Y ) = 0 the two
RVs X and Y are said to be uncorrelated. In fact,
if ρ(X ,Y ) = 1(or−1) then Y is a linearly increasing (or decreasing)
function of X .
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Random samples
An important situation is where we have a collection of n
RVs, X1,X2, . . . ,Xn which are independent and identically distributed
(IID). Such a collection of RVs represents a random sample of size n
taken from some common probability distribution. For example, the
sample could be of repeated measurements of given random quantity.
Consider the RV given by

X n =
1
n

n

∑
i=1

Xi

which is known as the sample mean.
We have that

E(X n) = E(
1
n

n

∑
i=1

Xi )

=
1
n

n

∑
i=1

E(Xi ) =
nµ

n
= µ

where µ = E(Xi ) is the common mean value of Xi .
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Distribution functions
Given a probability space (Ω,F ,P) we have so far considered
discrete RVs that can take a countable number of values. More
generally, we define X : Ω→ R as a random variable if

{ω ∈ Ω |X (ω)≤ x} ∈F ∀x ∈ R .

Note that a discrete random variable, X , is a random variable since

{ω ∈ Ω |X (ω)≤ x}= ∪x ′∈Im(X ):x ′≤x{ω ∈ Ω |X (ω) = x ′} ∈F .

Definition (Distribution function)
If X is a RV then the distribution function of X , written FX (x), is
defined by

FX (x) = P({ω ∈ Ω |X (ω)≤ x}) = P(X ≤ x) .
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Properties of the distribution function
FX (x) = P(X ≤ x)

x

FX (x)

0

1

1. If x ≤ y then FX (x)≤ FX (y).
2. If x →−∞ then FX (x)→ 0.
3. If x → ∞ then FX (x)→ 1.
4. If a < b then P(a < X ≤ b) = FX (b)−FX (a).
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Continuous random variables
Random variables that take just a countable number of values are
called discrete. More generally, we have that a RV can be defined by
its distribution function, FX (x). A RV is said to be a continuous
random variable when the distribution function has sufficient
smoothness that

FX (x) = P(X ≤ x) =
∫ x

−∞

fX (u)du

for some function fX (x). We can then take

fX (x) =

{
dFX (x)

dx if the derivative exists at x
0 otherwise .

The function fX (x) is called the probability density function of the
continuous RV X or often just the density of X .
The density function for continuous RVs plays the analogous rôle to
the probability mass function for discrete RVs.
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Properties of the density function

x

fX (x)

0

1. ∀x ∈ R . fX (x)≥ 0.
2.
∫

∞

−∞
fX (x)dx = 1.

3. If a≤ b then P(a≤ X ≤ b) =
∫ b

a fX (x)dx .
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Examples of continuous random variables
We define some common continuous RVs, X , by their density
functions, fX (x).

Example (Uniform distribution, U(a,b))

x

fX (x)

0 a b

1
(b−a)

Given a ∈ R and b ∈ R with a < b then

fX (x) =

{
1

(b−a) if a < x < b
0 otherwise .

RV, X Parameters Im(X ) Mean Variance

U(a,b) a,b ∈ R (a,b) a+b
2

(b−a)2
12

a < b

Notationally we write
X ∼ U(a,b) .
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Examples of continuous random variables, ctd

Example (Exponential distribution, Exp(λ ))

x

fX (x)

0

1

λ = 1

Given λ > 0 then

fX (x) =

{
λe−λx if x > 0
0 otherwise .

RV, X Parameters Im(X ) Mean Variance
Exp(λ ) λ > 0 R+

1
λ

1
λ 2

Notationally we write
X ∼ Exp(λ ) .
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Examples of continuous random variables, ctd

Example (Normal distribution, N(µ,σ2))

x

fX (x)

µ

Given µ ∈ R and σ2 > 0 then

fX (x) =
1√

2πσ2
e−(x−µ)2/(2σ2) −∞ < x < ∞

RV, X Parameters Im(X ) Mean Variance
N(µ,σ2) µ ∈ R R µ σ2

σ2 > 0

Notationally we write
X ∼ N(µ,σ2) .
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Expectations of continuous random variables
Just as for discrete RVs we can define the expectation of a
continuous RV with density function fX (x) by a weighted averaging.

Definition (Expectation)
The expectation of X is given by

E(X ) =
∫

∞

−∞

xfX (x)dx

whenever the integral exists.
In a similar way to the discrete case we have that if g : R→ R then

E(g(X )) =
∫

∞

−∞

g(x)fX (x)dx

whenever the integral exists.
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Variances of continuous random variables
Similarly, we can define the variance of a continuous RV X .

Definition (Variance)
The variance, Var(X ), of a continuous RV X with density
function fX (x) is defined as

Var(X ) = E
(

(X −E(X ))2
)

=
∫

∞

−∞

(x −µ)2fX (x)dx

whenever the integral exists and where µ = E(X ).

Exercise: check that we again find the useful result connecting the
second central moment to the first and second moments.

Var(X ) = E(X 2)− (E(X ))2 .
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Example: exponential distribution, Exp(λ )
Suppose that the RV X has an exponential distribution with
parameter λ > 0 then using integration by parts

E(X ) =
∫

∞

0
xλe−λxdx

=
[
−xe−λx

]∞

0
+
∫

∞

0
e−λxdx

= 0 +
1
λ

(∫
∞

0
λe−λxdx

)
=

1
λ

and

E(X 2) =
∫

∞

0
x2

λe−λxdx

=
[
−x2e−λx

]∞

0
+
∫

∞

0
2xe−λxdx

= 0 +
2
λ

(∫
∞

0
xλe−λxdx

)
=

2
λ 2 .

Hence, Var(X ) = E(X 2)− (E(X ))2 = 2
λ 2 − ( 1

λ
)2 = 1

λ 2 .
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Bivariate continuous random variables
Given a probability space (Ω,F ,P), we may have multiple continuous
RVs, X and Y , say.

Definition (joint probability distribution function)
The joint probability distribution function is given by

FX ,Y (x ,y) = P({ω ∈ Ω |X (ω)≤ x}∩{ω ∈ Ω |Y (ω)≤ y})
= P(X ≤ x ,Y ≤ y)

for all x ,y ∈ R.
Independence follows in a similar way to the discrete case and we
say that two continuous RVs X and Y are independent if

FX ,Y (x ,y) = FX (x)FY (y)

for all x ,y ∈ R.
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Bivariate density functions
The bivariate density of two continuous RVs X and Y satisfies

FX ,Y (x ,y) =
∫ x

u=−∞

∫ y

v=−∞

fX ,Y (u,v)dudv

and is given by

fX ,Y (x ,y) =

{
∂ 2

∂x∂y FX ,Y (x ,y) if the derivative exists at (x ,y)

0 otherwise .

We have that
fX ,Y (x ,y)≥ 0 ∀x ,y ∈ R

and that ∫
∞

−∞

∫
∞

−∞

fX ,Y (x ,y)dxdy = 1 .
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Marginal densities and independence
If X and Y have a joint density function fX ,Y (x ,y) then we have
marginal densities

fX (x) =
∫

∞

v=−∞

fX ,Y (x ,v)dv

and
fY (y) =

∫
∞

u=−∞

fX ,Y (u,y)du .

In the case that X and Y are also independent then

fX ,Y (x ,y) = fX (x)fY (y)

for all x ,y ∈ R.
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Conditional density functions
The marginal density fY (y) tells us about the variation of the RV Y
when we have no information about the RV X . Consider the opposite
extreme when we have full information about X , namely, that X = x ,
say. We can not evaluate an expression like

P(Y ≤ y |X = x)

directly since for a continuous RV P(X = x) = 0 and our definition of
conditional probability does not apply.
Instead, we first evaluate P(Y ≤ y |x ≤ X ≤ x + δx) for any δx > 0.
We find that

P(Y ≤ y |x ≤ X ≤ x + δx) =
P(Y ≤ y ,x ≤ X ≤ x + δx)

P(x ≤ X ≤ x + δx)

=

∫ x+δx
u=x

∫ y
v=−∞

fX ,Y (u,v)dudv∫ x+δx
u=x fX (u)du

.
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Conditional density functions, ctd
Now divide the numerator and denominator by δx and take the limit
as δx → 0 to give

P(Y ≤ y |x ≤ X ≤ x + δx)→
∫ y

v=−∞

fX ,Y (x ,v)

fX (x)
dv

= G(y),say

where G(y) is a distribution function with corresponding density

g(y) =
fX ,Y (x ,y)

fX (x)
.

Accordingly, we define the notion of a conditional density function as
follows.

Definition
The conditional density function of Y given X = x is defined as

fY |X (y |x) =
fX ,Y (x ,y)

fX (x)

defined for all y ∈ R and x ∈ R such that fX (x) > 0.
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Probability generating functions
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Probability generating functions
A very common situation is when a RV, X , can take only non-negative
integer values, that is Im(X )⊂ {0,1,2, . . .}. The probability mass
function, P(X = k), is given by a sequence of values p0,p1,p2, . . .
where

pk = P(X = k) ∀k ∈ {0,1,2, . . .}
and we have that

pk ≥ 0 ∀k ∈ {0,1,2, . . .} and
∞

∑
k=0

pk = 1 .

The terms of this sequence can be wrapped together to define a
certain function called the probability generating function (PGF).

Definition (Probability generating function)
The probability generating function, GX (z), of a (non-negative
integer-valued) RV X is defined as

GX (z) =
∞

∑
k=0

pk zk

for all values of z such that the sum converges appropriately.
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Elementary properties of the PGF
1. GX (z) = ∑

∞

k=0 pk zk so

GX (0) = p0 and GX (1) = 1 .

2. If g(t) = z t then

GX (z) =
∞

∑
k=0

pk zk =
∞

∑
k=0

g(k)P(X = k) = E(g(X )) = E(zX ) .

3. The PGF is defined for all |z| ≤ 1 since

∞

∑
k=0
|pk zk | ≤

∞

∑
k=0

pk = 1 .

4. Importantly, the PGF characterizes the distribution of a RV in the
sense that

GX (z) = GY (z) ∀z

if and only if

P(X = k) = P(Y = k) ∀k ∈ {0,1,2, . . .} .
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Examples of PGFs

Example (Bernoulli distribution)

GX (z) = q + pz where q = 1−p .

Example (Binomial distribution, Bin(n,p))

GX (z) =
n

∑
k=0

(
n
k

)
pk (q)n−k zk = (q + pz)n where q = 1−p .

Example (Geometric distribution, Geo(p))

GX (z) =
∞

∑
k=1

pqk−1zk = pz
∞

∑
k=0

(qz)k =
pz

1−qz
if |z|< q−1 and q = 1−p .
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Examples of PGFs, ctd

Example (Uniform distribution, U(1,n))

GX (z) =
n

∑
k=1

zk 1
n

=
z
n

n−1

∑
k=0

zk =
z
n

(1−zn)

(1−z)
.

Example (Poisson distribution, Pois(λ ))

GX (z) =
∞

∑
k=0

λ k e−λ

k !
zk = eλze−λ = eλ (z−1) .
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Derivatives of the PGF
We can derive a very useful property of the PGF by considering the
derivative, G′X (z), with respect to z of the PGF GX (z). Assume we
can interchange the order of differentiation and summation, so that

G′X (z) =
d
dz

(
∞

∑
k=0

zkP(X = k)

)

=
∞

∑
k=0

d
dz

(
zk
)
P(X = k)

=
∞

∑
k=0

kzk−1P(X = k)

then putting z = 1 we have that

G′X (1) =
∞

∑
k=0

kP(X = k) = E(X )

the expectation of the RV X .
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Further derivatives of the PGF
Taking the second derivative gives

G′′X (z) =
∞

∑
k=0

k(k −1)zk−2P(X = k) .

So that,

G′′X (1) =
∞

∑
k=0

k(k −1)P(X = k) = E(X (X −1))

Generally, we have the following result.

Theorem
If the RV X has PGF GX (z) then the r-th derivative of the PGF,
written G(r)

X (z), evaluated at z = 1 is such that

G(r)
X (1) = E(X (X −1) · · ·(X − r + 1)) .
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Using the PGF to calculate E(X ) and Var(X )
We have that

E(X ) = G′X (1)

and

Var(X ) = E(X 2)− (E(X ))2

= [E(X (X −1)) +E(X )]− (E(X ))2

= G′′X (1) + G′X (1)−G′X (1)2 .

For example, if X is a RV with the Pois(λ ) distribution
then GX (z) = eλ (z−1).
Thus, G′X (z) = λeλ (z−1) and G′′X (z) = λ 2eλ (z−1).
So, G′X (1) = λ and G′′X (1) = λ 2.
Finally,

E(X ) = λ and Var(X ) = λ
2 + λ −λ

2 = λ .
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Sums of independent random variables
The following theorem shows how PGFs can be used to find the PGF
of the sum of independent RVs.

Theorem
If X and Y are independent RVs with PGFs GX (z) and GY (z)
respectively then

GX+Y (z) = GX (z)GY (z) .

Proof.
Using the independence of X and Y we have that

GX+Y (z) = E(zX+Y )

= E(zX zY )

= E(zX )E(zY )

= GX (z)GY (z)
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PGF example: Poisson RVs
For example, suppose that X and Y are independent RVs
with X ∼ Pois(λ1) and Y ∼ Pois(λ2), respectively.
Then

GX+Y (z) = GX (z)GY (z)

= eλ1(z−1)eλ2(z−1)

= e(λ1+λ2)(z−1) .

Hence X + Y ∼ Pois(λ1 + λ2) is again a Poisson RV but with the
parameter λ1 + λ2.
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PGF example: Uniform RVs
Consider the case of two fair dice with IID
outcomes X and Y , respectively, so that X ∼ U(1,6)
and Y ∼ U(1,6). Let the total score be Z = X + Y
and consider the probability generating function
of Z given by GZ (z) = GX (z)GY (z). Then

GZ (z) =
1
6

(z + z2 + · · ·+ z6)
1
6

(z + z2 + · · ·+ z6)

=
1
36

[z2 + 2z3 + 3z4 + 4z5 + 5z6 + 6z7+

5z8 + 4z9 + 3z10 + 2z11 + z12] .

k

P(X = k)
1
6

1 2 3 4 5 6
k

P(Y = k)
1
6

1 2 3 4 5 6
k

P(Z = k)
1
6 = 6

36

3
36

2 3 4 5 6 7 8 9 101112
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Elementary stochastic processes
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Random walks
Consider a sequence Y1,Y2, . . . of independent and identically
distributed (IID) RVs with P(Yi = 1) = p and P(Yi =−1) = 1−p
with p ∈ [0,1].

Definition (Simple random walk)
The simple random walk is a sequence of RVs {Xn |n ∈ {1,2, . . .}}
defined by

Xn = X0 + Y1 + Y2 + · · ·+ Yn

where X0 ∈ R is the starting value.

Definition (Simple symmetric random walk)
A simple symmetric random walk is a simple random walk with the
choice p = 1/2.

n

Xn

0

X0

1 2 3 4 5 6 7 8 9

E.g. X0 = 2 & (Y1 ,Y2 , . . . ,Y9 , . . .) = (1,−1,−1,−1,−1,1,1,1,−1, . . .)
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Examples
Practical examples of random walks abound
across the physical sciences (motion of atomic
particles) and the non-physical sciences
(epidemics, gambling, asset prices).

The following is a simple model for the operation of a casino.
Suppose that a gambler enters with a capital of £X0. At each stage
the gambler places a stake of £1 and with probability p wins the
gamble otherwise the stake is lost. If the gambler wins the stake is
returned together with an additional sum of £1.
Thus at each stage the gambler’s capital increases by £1 with
probability p or decreases by £1 with probability 1−p.
The gambler’s capital Xn at stage n thus follows a simple random
walk except that the gambler is bankrupt if Xn reaches £0 and then
can not continue to any further stages.
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Returning to the starting state for a simple random
walk

Let Xn be a simple random walk and

rn = P(Xn = X0) for n = 1,2, . . .

the probability of returning to the starting state at time n.
We will show the following theorem.

Theorem
If n is odd then rn = 0 else if n = 2m is even then

r2m =

(
2m
m

)
pm(1−p)m .
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Proof.
The position of the random walk will change by an amount

Xn−X0 = Y1 + Y2 + · · ·+ Yn

between times 0 and n. Hence, for this change Xn−X0 to be 0 there
must be an equal number of up steps as down steps. This can never
happen if n is odd and so rn = 0 in this case. If n = 2m is even then
note that the number of up steps in a total of n steps is a binomial RV
with parameters 2m and p. Thus,

r2m = P(Xn−X0 = 0) =

(
2m
m

)
pm(1−p)m .

This result tells us about the probability of returning to the starting
state at a given time n.
We will now look at the probability that we ever return to our starting
state. For convenience, and without loss of generality, we shall take
our starting value as X0 = 0 from now on.
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Recurrence and transience of simple random
walks

Note first that E(Yi ) = p− (1−p) = 2p−1 for each i ∈ {1,2, . . .}. Thus
there is a net drift upwards if p > 1/2 and a net drift downwards
if p < 1/2. Only in the case p = 1/2 is there no net drift upwards nor
downwards.
We say that the simple random walk is recurrent if it is certain to
revisit its starting state at some time in the future and transient
otherwise.
We shall prove the following theorem.

Theorem
For a simple random walk with starting state X0 = 0 the probability of
revisiting the starting state is

P(Xn = 0 for some n ∈ {1,2, . . .}) = 1−|2p−1| .

Thus a simple random walk is recurrent only when p = 1/2.
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Proof
We have that X0 = 0 and that the event Rn = {Xn = 0} indicates that
the simple random walk returns to its starting state at time n.
Consider the event

Fn = {Xn = 0,Xm 6= 0for m ∈ {1,2, . . . ,(n−1)}}
that the random walk first revisits its starting state at time n. If Rn
occurs then exactly one of F1,F2, . . . ,Fn occurs. So,

P(Rn) =
n

∑
m=1

P(Rn ∩Fm)

but
P(Rn ∩Fm) = P(Fm)P(Rn−m) for m ∈ {1,2, . . . ,n}

since we must first return at time m and then return a time n−m later
which are independent events. So if we write fn = P(Fn)
and rn = P(Rn) then

rn =
n

∑
m=1

fmrn−m .

Given the expression for rn we now wish to solve these equations
for fm.
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Proof, ctd
Define generating functions for the sequences rn and fn by

R(z) =
∞

∑
n=0

rnzn and F (z) =
∞

∑
n=0

fnzn

where r0 = 1 and f0 = 0 and take |z|< 1. We have that

∞

∑
n=1

rnzn =
∞

∑
n=1

n

∑
m=1

fmrn−mzn

=
∞

∑
m=1

∞

∑
n=m

fmzmrn−mzn−m

=
∞

∑
m=1

fmzm
∞

∑
k=0

rk zk

= F (z)R(z) .

The left hand side is R(z)− r0z0 = R(z)−1 thus we have that

R(z) = R(z)F (z) + 1 if |z|< 1.
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Proof, ctd
Now,

R(z) =
∞

∑
n=0

rnzn

=
∞

∑
m=0

r2mz2m as rn = 0 if n is odd

=
∞

∑
m=0

(
2m
m

)
(p(1−p)z2)m

= (1−4p(1−p)z2)−
1
2 .

The last step follows from the binomial series expansion
of (1−4θ)−

1
2 and the choice θ = p(1−p)z2.

Hence,
F (z) = 1− (1−4p(1−p)z2)

1
2 for |z|< 1 .
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Proof, ctd
But now

P(Xn = 0for some n = 1,2, . . .) = P(F1∪F2∪·· ·)
= f1 + f2 + · · ·

= lim
z↑1

∞

∑
n=1

fnzn

= F (1)

= 1− (1−4p(1−p))
1
2

= 1− ((p + (1−p))2−4p(1−p))
1
2

= 1− ((2p−1)2)
1
2

= 1−|2p−1| .

So, finally, the simple random walk is certain to revisit its starting state
just when p = 1/2.
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Mean return time
Consider the recurrent case when p = 1/2 and set

T = min{n ≥ 1 |Xn = 0} so that P(T = n) = fn

where T is the time of the first return to the starting state. Then

E(T ) =
∞

∑
n=1

nfn

= G′T (1)

where GT (z) is the PGF of the RV T and for p = 1/2 we have
that 4p(1−p) = 1 so

GT (z) = 1− (1−z2)
1
2

so that
G′T (z) = z(1−z2)−

1
2 → ∞ as z ↑ 1 .

Thus, the simple symmetric random walk (p = 1/2) is recurrent but
the expected time to first return to the starting state is infinite.
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The Gambler’s ruin problem
We now consider a variant of the simple random walk. Consider two
players A and B with a joint capital between them of £N. Suppose that
initially A has X0 = £a (0≤ a≤ N).
At each time step player B gives A £1 with probability p and with
probability q = (1−p) player A gives £1 to B instead. The outcomes
at each time step are independent.
The game ends at the first time Ta if either XTa = £0 or XTa = £N for
some Ta ∈ {0,1, . . .}.
We can think of A’s wealth, Xn, at time n as a simple random walk on
the states {0,1, . . . ,N} with absorbing barriers at 0 and N.
Define the probability of ruin for gambler A as

ρa = P(A is ruined) = P(B wins) for 0≤ a≤ N .

n

Xn

0

N = 5

X0 = 2

1 2 3 4 5 6 7 8 9

E.g. N = 5, X0 = a = 2 & (Y1,Y2,Y3,Y4) = (1,−1,−1,−1)

T2 = 4 & XT2 = X4 = 0
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Solution of the Gambler’s ruin problem

Theorem
The probability of ruin when A starts with an initial capital of a is given
by

ρa =

{
θa−θN

1−θN if p 6= q
1− a

N if p = q = 1/2

where θ = q/p.
For illustration here is a set of graphs of ρa for N = 100 and three
possible choices of p.

a

ρa

10 20 30 40 50 60 70 80 90 1000

1

0.75

0.5

0.25

p = 0.49

p = 0.5

p = 0.51
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Proof
Consider what happens at the first time step

ρa = P(ruin∩Y1 = +1|X0 = a) +P(ruin∩Y1 =−1|X0 = a)

= pP(ruin|X0 = a + 1) + qP(ruin|X0 = a−1)

= pρa+1 + qρa−1

Now look for a solution to this difference equation of the form λ a with
boundary conditions ρ0 = 1 and ρN = 0.
Try a solution of the form ρa = λ a to give

λ
a = pλ

a+1 + qλ
a−1

Hence,
pλ

2−λ + q = 0

with solutions λ = 1 and λ = q/p.

CST IA Prob 2012/13 (82)



Proof, ctd
If p 6= q there are two distinct solutions and the general solution of the
difference equation is of the form A + B(q/p)a.
Applying the boundary conditions

1 = ρ0 = A + B and 0 = ρN = A + B(q/p)N

we get
A =−B(q/p)N

and
1 = B−B(q/p)N

so

B =
1

1− (q/p)N and A =
−(q/p)N

1− (q/p)N .

Hence,

ρa =
(q/p)a− (q/p)N

1− (q/p)N .
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Proof, ctd
If p = q = 1/2 then the general solution is C + Da.
So with the boundary conditions

1 = ρ0 = C + D(0) and 0 = ρN = C + D(N) .

Therefore,
C = 1 and 0 = 1 + D(N)

so
D =−1/N

and
ρa = 1−a/N .
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Mean duration time
Set Ta as the time to be absorbed at either 0 or N starting from the
initial state a and write µa = E(Ta).
Then, conditioning on the first step as before

µa = 1 + pµa+1 + qµa−1 for 1≤ a≤ N−1

and µ0 = µN = 0.
It can be shown that µa is given by

µa =

{
1

p−q

(
N (q/p)a−1

(q/p)N−1 −a
)

if p 6= q

a(N−a) if p = q = 1/2 .

We skip the proof here but note the following cases can be used to
establish the result.
Case p 6= q: trying a particular solution of the form µa = ca shows
that c = 1/(q−p) and the general solution is then of the
form µa = A + B(q/p)a + a/(q−p). Fixing the boundary conditions
gives the result.
Case p = q = 1/2: now the particular solution is −a2 so the general
solution is of the form µa = A + Ba−a2 and fixing the boundary
conditions gives the result.
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Case studies
Two short cases studies where probability has played a pivitol role:

1. Birthday problem (“birthday attack”)
I cryptographic attacks

2. Probabilistic classification (“naive Bayes classifier”)
I email spam filtering
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The birthday problem
Consider the problem of computing the probability, p(n), that in a
party of n people at least two people share a birthday (that is, the
same day and month but not necessarily same year).
It is easiest to first work out 1−p(n) = q(n), say,
where q(n) = P(none of the n people share a birthday) then

q(n) =

(
364
365

)(
363
365

)
· · ·
(

365−n + 1
365

)
=

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− n−1
365

)
=

n−1

∏
k=1

(
1− k

365

)
.

Surprisingly, n = 23 people suffice to make p(n) greater than 50%.
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Graph of p(n)
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Assumptions
We should record some of our assumptions behind the calculation
of p(n).

1. Ignore leap days (29 Feb)
2. Each birthday is equally likely
3. People are selected independently and without regard to their

birthday to attend the party (ignore twins, etc)
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Examples: coincidences on the football field
Ian Stewart writing in Scientific American illustrates the birthday
problem with an interesting example. In a football match there are 23
people (two teams of 11 plus the referee) and on 19 April 1997 out of
10 UK Premier Division games there were 6 games with birthday
coincidences and 4 games without.
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Examples: cryptographic hash functions
A hash function y = f (x) used in cryptographic applications is usually
required to have the following two properties (amongst others):

1. one-way function: computationally intractible to find an x given y .
2. collision-resistant: computationally intractible to find distinct x1

and x2 such that f (x1) = f (x2).
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Probability of same birthday as you
Note that in calculating p(n) we are not specifying which birthday (for
example, your own) matches. For the case of finding a match to your
own birthday amongst a party of n other people we would calculate

1−
(

364
365

)n

.
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General birthday problem
Suppose we have a random sample X1,X2, . . . ,Xn of size n where Xi
are IID with Xi ∼ U(1,d) and let p(n,d) be the probability that there
are at least two outcomes that coincide.
Then

p(n,d) =

{
1−∏

n−1
k=1

(
1− k

d

)
n ≤ d

1 n > d .

The usual birthday problem is the special case when d = 365.

CST IA Prob 2012/13 (93)



Approximations
One useful approximation is to note that for x � 1 then 1−x ≈ e−x .
Hence for n ≤ d

p(n,d) = 1−
n−1

∏
k=1

(
1− k

d

)
≈ 1−

n−1

∏
k=1

e−
k
d

= 1−e−(∑
n−1
k=1 k)/d

= 1−e−n(n−1)/(2d) .

We can further approximate the last expression as

p(n,d)≈ 1−e−n2/(2d) .
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Inverse birthday problem
Using the last approximation

p(n,d)≈ 1−e−n2/(2d)

we can invert the birthday problem to find n = n(p,d), say, such
that p(n,d)≈ p so then

e−n(p,d)2/(2d) ≈ 1−p

−n(p,d)2

2d
≈ log(1−p)

n(p,d)2 ≈ 2d log
(

1
1−p

)
n(p,d)≈

√
2d log

(
1

1−p

)
.

In the special case of d = 365 and p = 1/2 this gives the
approximation n(0.5,365)≈

√
2×365× log(2)≈ 22.49.
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Expected waiting times for a collision/match
Let Wd be the random variable specifiying the number of iterations
when you choose one of d values independently and uniformly at
random (with replacement) and stop when any value is selected a
second time (that is, a “collision” or “match” occurs).
It is possible to show that

E(Wd )≈
√

πd
2

.

Thus in the special case of the birthday problem where d = 365 we

have that E(W365)≈
√

π×365
2 ≈ 23.94.

In the case that we have a cryptographic hash function with 160-bit
outputs (d = 2160) then E(W2160)≈ 1.25×280. This level of reduction
leads to so-called “birthday attacks”. (See the IB course Security I for
further details.)
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Further results
Persi Diaconis and Frederick Mosteller give results on the minimum
number nk required to give a probability greater than 1/2 of k or more
matches with d = 365 possible choices.

k 2 3 4 5 6 7 8 9 10
nk 23 88 187 313 460 623 798 985 1181
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Email spam filtering
Suppose that an email falls into exactly one of two classes (spam or
ham) and that various features F1,F2, . . . ,Fn of an email message can
be measured. Such features could be the presence or absence of
particular words or groups of words, etc, etc.
We would like to determine P(C |F1,F2, . . . ,Fn) the probability that an
email message falls into a class C given the measured
features F1,F2, . . . ,Fn. We can use Bayes’ theorem to help us.
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Bayes’ theorem for emails
We have that

P(C |F1,F2, . . . ,Fn) =
P(C)P(F1,F2, . . . ,Fn |C)

P(F1,F2, . . . ,Fn)

which can be expressed in words as

posterior probability =
prior probability× likelihood

evidence
.
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Naive Bayes classifier
In the naive Bayes classifier we make the assumption of
independence across features. So that

P(F1,F2, . . . ,Fn |C) =
n

∏
i=1

P(Fi |C)

and then

P(C |F1,F2, . . . ,Fn) ∝ P(C)
n

∏
i=1

P(Fi |C) .

CST IA Prob 2012/13 (100)



Decision rule for naive Bayes classifier
We then use the decision rule to classify an email with observed
features F1,F2, . . . ,Fn as spam if

P(C = spam)
n

∏
i=1

P(Fi |C = spam) > P(C = ham)
n

∏
i=1

P(Fi |C = ham) .

This decision rule is known as the maximum a posteriori (MAP) rule.
Surveys and a training set of manually classified emails are needed
to estimate the values of P(C) and P(Fi |C).
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Properties of discrete RVs
RV, X Parameters Im(X) P(X = k) E(X) Var(X) GX (z)

Bernoulli p ∈ [0,1] {0,1} (1−p) if k = 0 or p if k = 1 p p(1−p) (1−p+pz)
Bin(n,p) n ∈ {1,2, . . .} {0,1, . . . ,n}

(n
k
)
pk (1−p)n−k np np(1−p) (1−p+pz)n

p ∈ [0,1]

Geo(p) 0 < p ≤ 1 {1,2, . . .} p(1−p)k−1 1
p

1−p
p2

pz
1−(1−p)z

U(1,n) n ∈ {1,2, . . .} {1,2, . . . ,n} 1
n

n+1
2

n2−1
12

z(1−zn)
n(1−z)

Pois(λ) λ > 0 {0,1, . . .} λk e−λ

k! λ λ eλ(z−1)
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Properties of continuous RVs

RV, X Parameters Im(X ) fX (x) E(X ) Var(X )

U(a,b) a,b ∈ R (a,b) 1
b−a

a+b
2

(b−a)2

12
a < b

Exp(λ ) λ > 0 R+ λe−λx 1
λ

1
λ 2

N(µ,σ2) µ ∈ R R 1√
2πσ2 e−(x−µ)2/(2σ2) µ σ2

σ2 > 0
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Notation
Ω sample space of possible outcomes ω ∈ Ω
F event space: set of random events E ⊂ Ω

I(E) indicator function of the event E ∈F
P(E) probability that event E occurs, e.g. E = {X = k}

RV random variable
X : Ω→ R Alternative to writing function as a relation X ⊆ Ω×R.

Im(X ) image set under RV X, i.e. {x ∈ R |∃ω ∈ Ω .X (ω) = x}
X ∼ U(0,1) RV X has the distribution U(0,1)

P(X = k) probability mass function of RV X
FX (x) distribution function, FX (x) = P(X ≤ x)
fX (x) density of RV X given, when it exists, by F ′X (x)
PGF probability generating function GX (z) for RV X
E(X ) expected value of RV X
E(X n) nth moment of RV X , for n = 1,2, . . .

Var(X ) variance of RV X
IID independent, identically distributed
X n sample mean of random sample X1,X2, . . . ,Xn
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