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A Few Cautionary Tales

The main enemy of this course is the simple phrase

“the computer calculated it, so it must be right”.

We’re happy to be wary for integer programs, e.g. having unit tests to

check that

sorting [5,1,3,2] gives [1,2,3,5],

but then we suspend our belief for programs producing real-number

values, especially if they implement a “mathematical formula”.
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Global Warming (2)

Apocryphal story – Dr X has just produced a new climate modelling

program.

Interviewer: what does it predict?

Dr X: Oh, the expected 2–4◦C rise in average temperatures by 2100.

Interviewer: is your figure robust?

Dr X: Oh yes, it only gives small variations in the result when any of the

input data is varied slightly.

Interviewer: so you’re pretty confident about your modelling progam?

Dr X: Oh yes, indeed it gives results in the same range even if any of the

input arguments are randomly permuted . . . . . .

We laugh, but let’s learn from this.
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Global Warming (3)

What could cause this sort or error?

• the wrong mathematical model of reality (most subject areas lack

models as precise and well-understood as Newtonian gravity)

• a parameterised model with parameters chosen to fit expected

results (‘over-fitting’)

• the model being very sensitive to input or parameter values

• the discretisation of the continuous model for computation

• the build-up or propagation of inaccuracies caused by the finite

precision of floating-point numbers

• plain old programming errors

We’ll only look at the last four, but don’t forget the first two.
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Real world examples

Find Kees Vuik’s web page “Computer Arithmetic Tragedies” for these

and more:

• Patriot missile interceptor fails to intercept due to 0.1 second being

the ‘recurring decimal’ 0.00 1100 1100 . . .2 in binary (1991)

• Ariane 5 $500M firework display caused by overflow in converting

64-bit floating-point number to 16-bit integer (1996)

• The Sleipner A offshore oil platform sank . . . post-accident

investigation traced the error to inaccurate finite element

approximation of the linear elastic model of the tricell (using the

popular finite element program NASTRAN). The shear stresses were

underestimated by 47% . . .

Learn from the mistakes of the past . . .
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Castle Hill Problem

Certain types of curry lead to

problems afterwards.
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Overall motto: threat minimisation

• Algorithms involving floating point (float and double in Java and

C, [misleadingly named] real in ML and Fortran) pose a significant

threat to the programmer or user.

• Learn to distrust your own näıve coding of such algorithms, and,

even more so, get to distrust others’.

• Start to think of ways of sanity checking (by human or machine)

any floating point value arising from a computation, library or

package—unless its documentation suggests an attention to detail

at least that discussed here (and even then treat with suspicion).

• Just because the “computer produces a numerical answer” doesn’t

mean this has any relationship to the ‘correct’ answer.

Here be dragons!
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What’s this course about?

• How computers represent and calculate with ‘real number’ values.

• What problems occur due to the values only being finite (both range

and precision).

• How these problems add up until you get silly answers.

• How you can stop your programs and yourself from looking silly

(and some ideas on how to determine whether existing programs

have been silly).

• Chaos and ill-conditionedness.

• Knowing when to call in an expert—remember there is 50+ years of

knowledge on this and you only get 6 lectures from me.
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Part 1

Introduction/reminding you what you

already know
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Reprise: signed and unsigned integers

An 8-bit value such as 10001011 can naturally be interpreted as either

an signed number (27 + 23 + 21 + 20 = 139) or as a signed number

(−27 + 23 + 21 + 20 = −117).

This places the decimal (binary!?!) point at the right-hand end. It could

also be interpreted as a fixed-point number by imagining a decimal point

elsewhere (e.g. in the middle to get) 1000.1011; this would have value

23 + 2−1 + 2−3 + 2−4 = 8 11
16 = 8.6875.

(The above is an unsigned fixed-point value for illustration, normally we

use signed fixed-point values.)
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Fixed point values and saturating arithmetic

Fixed-point values are often useful (e.g. in low-power/embedded devices)

but they are prone to overflow. E.g. 2*10001011 = 00010110 so

2*8.6875 = 1.375!! One alternative is to make operations saturating so

that 2*10001011 = 11111111 which can be useful (e.g. in audio). Note

1111.11112 = 15.937510.

An alternative way to avoid this sort of overflow is to allow the decimal

point to be determined at run-time (by another part of the value)

“floating point” instead of being fixed (independent of the value as

above) “fixed point” – the subject of this course.
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Back to school

Scientific notation (from Wikipedia, the free encyclopedia)

In scientific notation, numbers are written using powers of ten in the

form a× 10b where b is an integer exponent and the coefficient a is any

real number, called the significand or mantissa.

In normalised form, a is chosen such that 1 ≤ a < 10. It is implicitly

assumed that scientific notation should always be normalised except

during calculations or when an unnormalised form is desired.

What Wikipedia should say: zero is problematic—its exponent doesn’t

matter and it can’t be put in normalised form.
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Back to school (2)

Steps for multiplication and division

Given two numbers in scientific notation,

x0 = a0 × 10b0 x1 = a1 × 10b1

Multiplication and division;

x0 ∗ x1 = (a0 ∗ a1)× 10b0+b1 x0/x1 = (a0/a1)× 10b0−b1

Note that result is not guaranteed to be normalised even if inputs are:

a0 ∗ a1 may now be between 1 and 100, and a0/a1 may be between 0.1

and 10 (both at most one out!). E.g.

5.67× 10−5 ∗ 2.34× 102 ≈ 13.3× 10−3 = 1.33× 10−2

2.34× 102/5.67× 10−5 ≈ 0.413× 107 = 4.13× 106
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Back to school (3)

Addition and subtraction require the numbers to be represented using

the same exponent, normally the bigger of b0 and b1.

W.l.o.g. b0 > b1, so write x1 = (a1 ∗ 10b1−b0)× 10b0 (a shift!) and

add/subtract the mantissas.

x0 ± x1 = (a0 ± (a1 ∗ 10b1−b0))× 10b0

E.g.

2.34× 10−5 +5.67× 10−6 = 2.34× 10−5 +0.567× 10−5 ≈ 2.91× 10−5

A cancellation problem we will see more of:

2.34× 10−5 − 2.33× 10−5 = 0.01× 10−5 = 1.00× 10−7

When numbers reinforce (e.g. add with same-sign inputs) new mantissa

is in range [1, 20), when they cancel it is in range [0..10). After

cancellation we may require several shifts to normalise.
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Significant figures can mislead

When using scientific-form we often compute repeatedly keeping the

same number of digits in the mantissa. In science this is often the

number of digits of accuracy in the original inputs—hence the term

(decimal) significant figures (sig.figs. or sf).

This is risky for two reasons:

• As in the last example, there may be 3sf in the result of a

computation but little accuracy left.

• 1.01× 101 and 9.98× 100 are quite close, and both have 3sf, but

changing them by one ulp (‘unit in last place’) changes the value by

nearly 1% (1 part in 101) in the former and about 0.1% (1 part in

998) in the latter. Later we’ll prefer “relative error”.
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Significant figures can mislead (2)

Scientific form numbers (note unequal gaps)
log scale shows this clearly

6

0.1

6

0.2

6
0.3

6

0.4

6

0.5

6
0.6

66

0.8

66

1.0

6

2.0

6
3

6

4

6

5

6
6
66

8

66

10

6

20

6
30

6

40

6

50

6
60

66

80

66

100

You might prefer to say sig.figs.(4.56) = − log10 0.01/4.56 so that

sf (1.01) and sf (101) is about 3, and sf (9.98) and sf (0.0000998) is

nearly 4.
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Get your calculator out!

Calculators are just floating point computers. Note that physical

calculators often work in decimal, but calculator programs (e.g. xcalc)

often work in binary. Many interesting examples on this course can be

demonstrated on a calculator—the underlying problem is floating point

computation and näıve-programmer failure to understand it rather than

programming per se.

Amusing to try (computer output is red)

(1+ 1e20)− 1e20 = 0.000000 1+ (1e20− 1e20) = 1.000000

But everyone knows that (a+ b) + c = a+ (b+ c) (associativity) in

maths and hence (a+ b)− d = a+ (b− d) [just write d = −c]!!!
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Get your calculator out (2)

How many sig.figs. does it work to/display [example is xcalc]?

1 / 9 = 0.11111111

<ans> - 0.11111111 = 1.111111e-09

<ans> - 1.111111e-9 = 1.059003e-16

<ans> - 1.059e-16 = 3.420001e-22

Seems to indicate 16sf calculated (16 ones before junk appears) and

7/8sf displayed—note the endearing/buggy(?) habit of xcalc of

displaying one fewer sf when an exponent is displayed.

Stress test it:

sin 1e40 = 0.3415751

Does anyone believe this result? [Try your calculator/programs on it.]
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Computer Representation

A computer representation must be finite. If we allocate a fixed size of

storage for each then we need to

• fix a size of mantissa (sig.figs.)

• fix a size for exponent (exponent range)

We also need to agree what the number means, e.g. agreeing the base

used by the exponent.

Why “floating point”? Because the exponent logically determines where

the decimal point is placed within (or even outside) the mantissa. This

originates as an opposite of “fixed point” where a 32-bit integer might

be treated as having a decimal point between (say) bits 15 and 16.

Floating point can simple be thought of simply as (a subset of all

possible) values in scientific notation held in a computer.
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Computer Representation (2)

Nomenclature. Given a number represented as βe × d0.d1 · · · dp−1 we

call β the base (or radix) and p the precision.

Note that (β = 2, p = 24) may be less accurate than (β = 10, p = 10).

Now let’s turn to binary representations (β = 2, as used on most modern

machines, will solely be considered in this course, but note the IBM/360

series of mainframes used β = 16 which gave some entertaining but

obsolete problems).
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Decimal or Binary?

Most computer arithmetic is in binary, as values are represented as 0’s

and 1’s. However, floating point values, even though they are

represented as bits, can use β = 2 or β = 10.

Most computer programs use the former. However, to some extent it is

non-intuitive for humans, especially for fractional numbers (e.g. that

0.110 is recurring when expressed in binary).

Most calculators work in decimal β = 10 to make life more intuitive, but

various software calculators work in binary (see xcalc above).

Microsoft Excel is a particular issue. It tries hard to give the illusion of

having floating point with 15 decimal digits, but internally it uses 64-bit

floating point. This gives rise to a fair bit of criticism and various users

with jam on their faces.
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Aside:Spreadsheet Experiments

Enter the following four items into the four cells named:

A1: 1.2E+200 C1: =A1+B1

B1: 1E+100 D1: =IF(A1=C1)

So far so good?

Can you adjust A1 or B1 so that C1 looks like A1 but D1 is false ?
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Part 2

Floating point representation
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Standards

In the past every manufacturer produced their own floating point

hardware and floating point programs gave different answers. IEEE

standardisation fixed this.

There are two different IEEE standards for floating-point computation.

IEEE 754 is a binary standard that requires β = 2, p = 24 (number of

mantissa bits) for single precision and p = 53 for double precision. It

also specifies the precise layout of bits in a single and double precision.

[Edited quote from Goldberg.]

It has just (2008) been revised to include additional (longer) binary

floating point formats and also decimal floating formats.

IEEE 854 is more general and allows binary and decimal representation

without fixing the bit-level format.
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IEEE 754 Floating Point Representation

Actually, I’m giving the version used on x86 (similar issues arise as in the

ordering of bytes with an 32-bit integer).

Single precision: 32 bits (1+8+23), β = 2, p = 24

sign
31

expt
30 23

mantissa
22 0

Double precision: 64 bits (1+11+52), β = 2, p = 53

sign
63

expt
62 52

mantissa
51 0

Value represented is typically: (s ?−1 : 1) ∗ 1.mmmmmm ∗ 2eeeee.
Note hidden bit: 24 (or 53) sig.bits, only 23 (or 52) stored!
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Hidden bit and exponent representation

Advantage of base-2 (β = 2) exponent representation: all normalised

numbers start with a ’1’, so no need to store it. (Just like base 10, there

normalised numbers start 1..9, in base 2 they start 1..1.)
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Hidden bit and exponent representation (2)

But: what about the number zero? Need to cheat, and while we’re at it

we create representations for infinity too. In single precision:

exponent exponent value represented

(binary) (decimal)

00000000 0 zero if mmmmm = 0

(‘denormalised number’ otherwise)

00000001 1 1.mmmmmm ∗ 2−126

. . . . . . . . .

01111111 127 1.mmmmmm ∗ 2−0 = 1.mmmmmm

10000000 128 1.mmmmmm ∗ 21
. . . . . . . . .

11111110 254 1.mmmmmm ∗ 2127
11111111 255 infinity if mmmmm = 0 (‘NaN’s otherwise)
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Digression (non-examinable)

IEEE define terms emin , emax delimiting the exponent range and

programming languages define constants like

#define FLT_MIN_EXP (-125)

#define FLT_MAX_EXP 128

whereas on the previous slide I listed the min/max exponent uses as

1.mmmmmm ∗ 2−126 to 1.mmmmmm ∗ 2127.

BEWARE: IEEE and ISO C write the above ranges as

0.1mmmmmm ∗ 2−125 to 0.1mmmmmm ∗ 2128 (so all p digits are

after the decimal point) so all is consistent, but remember this if you

ever want to use FLT_MIN_EXP or FLT_MAX_EXP.

I’ve kept to the more intuitive 1.mmmmm form in these notes.
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Hidden bit and exponent representation (3)

Double precision is similar, except that the 11-bit exponent field now

gives non-zero/non-infinity exponents ranging from 000 0000 0001

representing 2−1022 via 011 1111 1111 representing 20 to 111 1111 1110

representing 21023.

This representation is called “excess-127” (single) or “excess-1023”

(double precision).

Why use it?

Because it means that (for positive numbers, and ignoring NaNs)

floating point comparison is the same as integer comparison.

Why 127 not 128? The committee decided it gave a more symmetric

number range (see next slide).
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Solved exercises

What’s the smallest and biggest normalised numbers in single precision

IEEE floating point?

Biggest: exponent field is 0..255, with 254 representing 2127. The

biggest mantissa is 1.111...111 (24 bits in total, including the implicit

leading one) so 1.111...111× 2127. Hence almost 2128 which is 28 ∗ 2120
or 256 ∗ 102412, i.e. around 3 ∗ 1038.
FLT_MAX from <float.h> gives 3.40282347e+38f.

Smallest? That’s easy: −3.40282347e+38! OK, I meant smallest

positive. I get 1.000...000× 2−126 which is by similar reasoning around

16× 2−130 or 1.6× 10−38.

FLT_MIN from <float.h> gives 1.17549435e-38f.
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Solved exercises (2)

‘denormalised numbers’ can range down to 2−150 ≈ 1.401298e-45, but

there is little accuracy at this level.

And the precision of single precision? 223 is about 107, so in principle

7sf. (But remember this is for representing a single number, operations

will rapidly chew away at this.)

And double precision? DBL MAX 1.79769313486231571e+308 and

DBL MIN 2.22507385850720138e-308 with around 16sf.

How many single precision floating point numbers are there?

Answer: 2 signs * 254 exponents * 223 mantissas for normalised

numbers plus 2 zeros plus 2 infinities (plus NaNs and denorms not

covered in this course).
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Solved exercises (3)

Which values are representable exactly as normalised single precision

floating point numbers?

Legal Answer: ± ((223 + i)/223)× 2j where 0 ≤ i < 223 and

−126 ≤ j ≤ 127 (because of hidden bit)

More Useful Answer: ± i× 2j where 0 ≤ i < 224 and

−126− 23 ≤ j ≤ 127− 23

(but legally only right for j < −126 if we also include denormalised

numbers):

Compare: what values are exactly representable in normalised 3sf

decimal? Answer: i× 10j where 100 ≤ i ≤ 999.
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Solved exercises (4)

So you mean 0.1 is not exactly representable? Its nearest single precision

IEEE number is the recurring ‘decimal’ 0x3dcccccd (note round to

nearest) i.e. 0 011 1101 1 100 1100 1100 1100 1100 1101 . Decoded,

this is 2−4 × 1.100 1100 · · · 11012, or
1
16 × (20 + 2−1 + 2−4 + 2−5 + · · ·+ 2−23). It’s a geometric progression

(that’s what ‘recurring decimal’ means) so you can sum it exactly, but

just from the first two terms it’s clear it’s approximately 1.5/16.

This is the source of the Patriot missile bug.
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Dividing by a Constant: Example divide by ten.

In binary, one tenth is 0.0001100110011....

Divide a 32 bit unsigned integer by 10 by long multiplication by

reciprocal using the following hand-crafted code:

unsigned div10(unsigned int n)

{ unsigned int q;

q = (n >> 1) + (n >> 2); // Ultimately shifts of 4 and 5.

q = q + (q >> 4); // Replicate: 0.11 becomes 0.110011

q = q + (q >> 8); // 0.110011 becomes 0.110011001100110011

q = q + (q >> 16); // Now have 32 bit’s worth of product.

return q >> 3; // Doing this shift last of all

// gave better intermediate accuracy.

}

More on http://www.hackersdelight.org/divcMore.pdf
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Solved exercises (5)

BTW, So how many times does

for (f = 0.0; f < 1.0; f += 0.1) { C }

iterate? Might it differ if f is single/double?

NEVER count using floating point unless you really know what you’re

doing (and write a comment half-a-page long explaining to the

‘maintenance programmer’ following you why this code works and why

näıve changes are likely to be risky).

See sixthcounting.c for a demo where float gets this accidentally

right and double gets it accidentally wrong.

The examples are on the web site both in C and Java.
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Solved exercises (5)

How many sig.figs. do I have to print out a single-precision float to be

able to read it in again exactly?

Answer: The smallest (relative) gap is from 1.11...110 to 1.11...111, a

difference of about 1 part in 224. If this of the form 1.xxx× 10b when

printed in decimal then we need 9 sig.figs. (including the leading ‘1’, i.e.

8 after the decimal point in scientific notation) as an ulp change is 1

part in 108 and 107 ≤ 224 ≤ 108.

[But you may only need 8 sig.figs if the decimal starts with 9.xxx—see

printsigfig float.c].

Note that this is significantly more than the 7sf accuracy quoted earlier

for float!

Floating Point Computation 36 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

Signed zeros, signed infinities

Signed zeros can make sense: if I repeatedly divide a positive number by

two until I get zero (‘underflow’) I might want to remember that it

started positive, similarly if I repeatedly double a number until I get

overflow then I want a signed infinity.

However, while differently-signed zeros compare equal, not all ’obvious’

mathematical rules remain true:

int main() {

double a = 0, b = -a;

double ra = 1/a, rb = 1/b;

if (a == b && ra != rb)

printf("Ho hum a=%f == b=%f but 1/a=%f != 1/b=%f\n", a,b, ra,rb);

return 0; }

Gives:

Ho hum a=0.000000 == b=-0.000000 but 1/a=inf != 1/b=-inf
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Overflow Exceptions

Overflow is the main potential source of exception.

Underflow is normally ignored silently.

Using floating point, overflow occurs when an exponent is too large to

be stored.

Overflow exceptions most commonly arise in division and multiplication.

Divide by zero is a special case of overflow.

But addition and subtraction can lead to overflow. When ?
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Exceptions versus infinities and NaNs?

The alternatives are to give either a wrong value, or an exception.

An infinity (or a NaN) propagates ‘rationally’ through a calculation and

enables (e.g.) a matrix to show that it had a problem in calculating

some elements, but that other elements can still be OK.

Raising an exception is likely to abort the whole matrix computation and

giving wrong values is just plain dangerous.

The most common way to get a NaN is by calculating 0.0/0.0 (there’s

no obvious ‘better’ interpretation of this) and library calls like sqrt(-1)

generally also return NaNs (but results in scripting languages can return

0 + 1i if, unlike Java, they are untyped and so don’t need the result to

fit in a single floating point variable).
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IEEE 754 History

Before IEEE 754 almost every computer had its own floating point

format with its own form of rounding – so floating point results differed

from machine to machine!

The IEEE standard largely solved this (in spite of mumblings “this is too

complex for hardware and is too slow” – now obviously proved false). In

spite of complaints (e.g. the two signed zeros which compare equal but

which can compare unequal after a sequence of operators) it has stood

the test of time.

However, many programming language standards allow intermediate

results in expressions to be calculated at higher precision than the

programmer requested so f(a*b+c) and { float t=a*b; f(t+c); }

may call f with different values. (Sigh!)
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IEEE 754 and Intel x86

Intel had the first implementation of IEEE 754 in its 8087 co-processor

chip to the 8086 (and drove quite a bit of the standardisation).

However, while this x87 chip could implement the IEEE standard

compiler writers and others used its internal 80-bit format in ways

forbidden by IEEE 754 (preferring speed over accuracy!).

The SSE2 instruction set on modern Intel x86 architectures (Pentium

and Core 2) includes a separate (better) instruction set which better

enables compiler writers to generate fast (and IEEE-valid) floating-point

code.

BEWARE: most modern x86 computers therefore have two floating point

units! This means that a given program for a Pentium (depending on

whether it is compiled for the SSE2 or x87 instruction set) can produce

different answers; the default often depends on whether the host

computer is running in 32-bit mode or 64-bit mode. (Sigh!)
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Part 3

Floating point operations

Floating Point Computation 42 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

IEEE arithmetic

This is a very important slide.

IEEE basic operations (+,−, ∗, / are defined as follows):

Treat the operands (IEEE values) as precise, do perfect mathematical

operations on them (NB the result might not be representable as an

IEEE number, analogous to 7.47+7.48 in 3sf decimal). Round(*) this

mathematical value to the nearest representable IEEE number and store

this as result. In the event of a tie (e.g. the above decimal example)

chose the value with an even (i.e. zero) least significant bit.

[This last rule is statistically fairer than the “round down 0–4, round up

5–9” which you learned in school. Don’t be tempted to believe the

exactly 0.50000 case is rare!]

This is a very important slide.

[(*) See next slide]
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IEEE Rounding

In addition to rounding prescribed above (which is the default

behaviour) IEEE requires there to be a global flag which can be set to

one of 4 values:

Unbiased which rounds to the nearest value, if the number falls midway

it is rounded to the nearest value with an even (zero) least

significant bit. This mode is required to be default.

Towards zero

Towards positive infinity

Towards negative infinity

Be very sure you know what you are doing if you change the mode, or if

you are editing someone else’s code which exploits a non-default mode

setting.
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Other mathematical operators?

Other mathematical operators are typically implemented in libraries.

Examples are sin, sqrt, log etc. It’s important to ask whether

implementations of these satisfy the IEEE requirements: e.g. does the

sin function give the nearest floating point number to the corresponding

perfect mathematical operation’s result when acting on the floating

point operand treated as perfect? [This would be a perfect-quality library

with error within 0.5 ulp and still a research problem for most functions.]

Or is some lesser quality offered? In this case a library (or package) is

only as good as the vendor’s careful explanation of what error bound the

result is accurate to (remember to ask!). ±1 ulp is excellent.

But remember (see ‘ill-conditionedness’ later) that a more important

practical issue might be how a change of 1 ulp on the input(s) affects the

output – and hence how input error bars become output error bars.
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The java.lang.Math libraries

Java (http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html)

has quite well-specified math routines, e.g. for asin() “arc sine”

“Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Special cases:

• If the argument is NaN or its absolute value is greater than 1, then

the result is NaN.

• If the argument is zero, then the result is a zero with the same sign

as the argument.

A result must be within 1 ulp of the correctly rounded result.

[perfect accuracy requires result within 0.5 ulp]

Results must be semi-monotonic.

[i.e. given that arc sine is monotonically increasing, this condition

requires that x < y implies asin(x) ≤ asin(y)]”
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Errors in Floating Point

When we do a floating point computation, errors (w.r.t. perfect

mathematical computation) essentially arise from two sources:

• the inexact representation of constants in the program and numbers

read in as data. (Remember even 0.1 in decimal cannot be

represented exactly in as an IEEE value, just like 1/3 cannot be

represented exactly as a finite decimal. Exercise: write 0.1 as a

(recurring) binary number)

• rounding errors produced by (in principle) every IEEE operation.

These errors build up during a computation, and we wish to be able to

get a bound on them (so that we know how accurate our computation

is).
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Errors in Floating Point (2)

It is useful to identify two ways of measuring errors. Given some value a

and an approximation b of a, the

Absolute error is ǫ = |a− b|

Relative error is η =
|a− b|
|a|

[http://en.wikipedia.org/wiki/Approximation_error]
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Errors in Floating Point (3)

Of course, we don’t normally know the exact error in a program, because

if we did then we could calculate the floating point answer and add on

this known error to get a mathematically perfect answer!

So, when we say the “relative error is (say) 10−6” we mean that the true

answer lies within the range [(1− 10−6)v..(1 + 10−6)v]

x± ǫ is often used to represent any value in the range [x− ǫ..x+ ǫ].

This is the idea of “error bars” from the sciences.
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Worst-Case Errors in Floating Point Operations

Errors from +,−: these sum the absolute errors of their inputs

(x± ǫx) + (y ± ǫy) = (x+ y)± (ǫx + ǫy)

Errors from ∗, /: these sum the relative errors (if these are small)

(x(1± ηx)) ∗ (y(1± ηy)) = (x ∗ y)(1± (ηx + ηy)± ηxηy)

and we discount the ηxηy product as being negligible.

Beware: when addition or subtraction causes partial or total cancellation

the relative error of the result can be much larger than that of the

operands.
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Random Walk Model for Error Accumulation

Summations 100 random Growth of relative error in p:

values each of ±1 float p = 1.0, x = x̂ + 0;

(N=100, a=1). for (i=0;i<100;i++) p=p * x;

If the steps are uncorrelated: expected sum is zero.

If the steps are uncorrelated: expected magnitude is a
√
N .

In example, factor x was constant (possible correlated behaviour?).
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Error Amplification is Typically More Important!

Growth of relative error in p: The same computation

float p = 1.0, x = x̂ + 0; but x = x̂± ǫ

for (i=0;i<100;i++) p=p * x; (x̂ is not representable).

The first plot is for when x is exactly representable (x = x̂).

For general x(1± η), final relative error is 100η [work it out yourself].

Simple worst-case analysis dominates random walk model.
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Gradual loss of significance

Consider the program (c.f. the calculator example earlier)

double x_magic = 10.0/9.0; // x = 1.111111111 ...

double x = x_magic;

for (i=0; i<30; i++)

{ printf("%e\n", x);

x = (x-1.0) * 10.0;

}

[Look at output on the laptop]

Initially x has around 16sf of accuracy (IEEE double). After every cycle

round the loop it still stores 16sf, but the accuracy of the stored value

reduces by 1sf per iteration.

This is called “gradual loss of significance” and is in practice at least as

much a problem as overflow and underflow and much harder to identify.
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What happened: Worst-Case Analysis

Assume x0 = x̂+ α.

Then we repeatedly do xn+1 := (xn − 1.0) ∗ 10.0
Subtract step: x has abs error α and 1.0 is exact, so resultant has abs error α.

Multiply step:

1. Convert abs to rel: we know x− 1 ≃ 0.111 so η = 1/0.111× α ≃ 10α

2. 10.0 is exact, so rel error from multiplication unchanged: η = 10α

3. Convert rel back to abs: value is approx 1.11 so ǫ = η = 10α

We accurately predict the factor of 10 growth in error.

Another starting value would overflow sooner, but the magic starting

value hides the problem.
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Machine Epsilon

Machine epsilon is defined as the difference between 1.0 and the smallest

representable number which is greater than one, i.e. 2−23 in single

precision, and 2−52 in double (in both cases β−(p−1)). ISO 9899 C says:

“the difference between 1 and the least value greater than 1

that is representable in the given floating point type”

I.e. machine epsilon is 1 ulp for the representation of 1.0.

For IEEE arithmetic, the C library <float.h> defines

#define FLT_EPSILON 1.19209290e-7F

#define DBL_EPSILON 2.2204460492503131e-16
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Machine Epsilon (2)

Machine epsilon is useful as it gives an upper bound on the relative error

caused by getting a floating point number wrong by 1 ulp, and is

therefore useful for expressing errors independent of floating point size.

(The relative error caused by being wrong by 1 ulp can be up to 50%

smaller than this, consider 1.5 or 1.9999.)

Floating point (β = 2, p = 3) numbers: macheps=0.25

0.0

· · · 6

0.25

6666

0.5

6
0.625

6

0.75

6
0.875

6

1.0

-� 6
1.25

6

1.5

6
1.75

6

2.0

6
2.5

6

3.0
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Machine Epsilon (3)

Some sources give an alternative (bad) definition: “the smallest number

which when added to one gives a number greater than one”. (With

rounding-to-nearest this only needs to be slightly more than half of our

machine epsilon).

Microsoft MSDN documentation (Feb 2009) gets this wrong:

Constant Value Meaning

FLT EPSILON 1.192092896e-07F Smallest such that

1.0+FLT EPSILON !=1.0

The value is right by the C standard, but the explanation inconsistent

with it – due to rounding. Whoops:

float one = 1.0f, xeps = 0.7e-7f;

printf("%.7e + %.7e = %.7e\n", one, xeps, (float)(xeps+one));

===>>>> 1.0000000e+00 + 6.9999999e-08 = 1.0000001e+00
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Machine Epsilon (4)

Oh yes, the GNU C library documentation (Nov 2007) gets it wrong too:

FLT_EPSILON

This is the minimum positive floating point number of type

float such that 1.0 + FLT_EPSILON != 1.0 is true.

Again, the implemented value is right, but the explanation inconsistent

with it.

Is the alternative definition ‘bad’? It’s sort-of justifiable as almost the

maximum quantisation error in ‘round-to-nearest’, but the ISO standards

chose to use “step between adjacent values” instead.
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Machine Epsilon (5) – Negative Epsilon

We defined machine epsilon as the difference between 1.0 and the

smallest representable number which is greater than one.

What about the difference between 1.0 and the greatest representable

number which is smaller than one?

In IEEE arithmetic this is exactly 50% of machine epsilon.

Why? Witching-hour effect. Let’s illustrate with precision of 5 binary

places (4 stored). One is 20 × 1.0000, the next smallest number is

20 × 0.111111111 . . . truncated to fit. But when we write this

normalised it is 2−1 × 1.1111 and so its ulp represents only half as much

as the ulp in 20 × 1.0001.
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Revisiting sin 1e40

The answer given by xcalc earlier is totally bogus. Why?

1040 is stored (like all numbers) with a relative error of around machine

epsilon. (So changing the stored value by 1 ulp results in an absolute

error of around 1040 ×machine epsilon.) Even for double (16sf), this

absolute error of representation is around 1024. But the sin function

cycles every 2π. So we can’t even represent which of many billions of

cycles of sine that 1040 should be in, let alone whether it has any

sig.figs.!

On a decimal calculator 1040 is stored accurately, but I would need π to

50sf to have 10sf left when I have range-reduced 1040 into the range

[0, π/2]. So, who can calculate sin 1e40? Volunteers?
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Part 4

Simple maths, simple programs

Floating Point Computation 61 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

Two Forms of Iteration

When calculating the sum to n we might use a loop:

xn =

n
∑

i=0

1

i+ π

s = 0;

for (int i=0; i<n; i++) s += ....;

This is called a map-reduce: the result from the previous step is not used

in the next step.

We have a totally different style of iteration when finding the root of an

equation:

xn+1 =
A/xn + xn

2

The way that errors build up or diminish is very different.
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Non-iterative programs

Iterative programs need additional techniques, because the program may

be locally sensible, but a small representation or rounding error can

slowly grow over many iterations so as to render the result useless.

So let’s first consider a program with a fixed number of operations:

x =
−b±

√
b2 − 4ac

2a

Or in C/Java:

double root1(double a, double b, double c)

{ return (-b + sqrt(b*b - 4*a*c))/(2*a); }

double root2(double a, double b, double c)

{ return (-b - sqrt(b*b - 4*a*c))/(2*a); }

What could be wrong with this so-simple code?
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Solving a quadratic

Let’s try to make sure the relative error is small.

Most operations in x = −b±
√
b2−4ac
2a are multiply, divide, sqrt—these add

little to relative error (see earlier): unary negation is harmless too.

But there are two additions/subtractions: b2 − 4ac and −b±
√

(· · ·).
Cancellation in the former (b2 ≈ 4ac) is not too troublesome (why?),

but consider what happens if b2 ≫ 4ac. This causes the latter ± to be

problematic for one of the two roots.

Just consider b > 0 for now, then the problem root (the smaller one in

magnitude) is
−b+

√
b2 − 4ac

2a
.
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Getting the small root right

x =
−b+

√
b2 − 4ac

2a

=
−b+

√
b2 − 4ac

2a
.
−b−

√
b2 − 4ac

−b−
√
b2 − 4ac

=
−2c

b+
√
b2 − 4ac

These are all equal in maths, but the final expression computes the little

root much more accurately (no cancellation if b > 0).

But keep the big root calculation as

x =
−b−

√
b2 − 4ac

2a

Need to do a bit more (i.e. opposite) work if b < 0
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Illustration—quadrat float.c

1 x^2 + -3 x + 2 =>

root1 2.000000e+00 (or 2.000000e+00 double)

1 x^2 + 10 x + 1 =>

root1 -1.010203e-01 (or -1.010205e-01 double)

1 x^2 + 100 x + 1 =>

root1 -1.000214e-02 (or -1.000100e-02 double)

1 x^2 + 1000 x + 1 =>

root1 -1.007080e-03 (or -1.000001e-03 double)

1 x^2 + 10000 x + 1 =>

root1 0.000000e+00 (or -1.000000e-04 double)

root2 -1.000000e+04 (or -1.000000e+04 double)
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Summing a Finite Series

We’ve already seen (a+ b) + c 6= a+ (b+ c) in general. So what’s the

best way to do (say)
n
∑

i=0

1

i+ π
?

Of course, while this formula mathematically sums to infinity for n = ∞,

if we calculate, using float

1

0 + π
+

1

1 + π
+ · · ·+ 1

i+ π
+ · · ·

until the sum stops growing we get 13.8492260 after 2097150 terms.

But is this correct? Is it the only answer?

[See sumfwdback.c on the course website for a program.]

Floating Point Computation 67 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

Summing a Finite Series (2)

Previous slide said: using float with N = 2097150 we got

1

0 + π
+

1

1 + π
+ · · ·+ 1

N + π
= 13.8492260

But, by contrast

1

N + π
+ · · ·+ 1

1 + π
+

1

0 + π
= 13.5784464

Using double precision (64-bit floating point) we get:

• forward: 13.5788777897524611

• backward: 13.5788777897519921

So the backwards one seems better. But why?
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Summing a Finite Series (3)

When adding a+ b+ c it is generally more accurate to sum the smaller

two values and then add the third. Compare (14 + 14) + 250 = 280 with

(250 + 14) + 14 = 270 when using 2sf decimal – and carefully note

where rounding happens.

So summing backwards is best for the (decreasing) series in the previous

slide.
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Summing a Finite Series (4)

General tips for an accurate result:

• Sum starting from smallest

• Even better, take the two smallest elements and replace them with

their sum (repeat until just one left).

• If some numbers are negative, add them with similar-magnitude

positive ones first (this reduces their magnitude without losing

accuracy).
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Summing a Finite Series (5)

A neat general algorithm (non-examinable) is Kahan’s summation

algorithm:

http://en.wikipedia.org/wiki/Kahan_summation_algorithm

This uses a second variable which approximates the error in the previous

step which can then be used to compensate in the next step.

For the example in the notes, even using single precision it gives:

• Kahan forward: 13.5788774

• Kahan backward: 13.5788774

which is within one ulp of the double sum 13.57887778975. . .

A chatty article on summing can be found in Dr Dobb’s Joqurnal:

http://www.ddj.com/cpp/184403224
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Part 5

Infinitary/limiting computations
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Rounding versus Truncation Error

Many mathematical processes are infinitary, e.g. limit-taking (including

differentiation, integration, infinite series), and iteration towards a

solution.

There are now two logically distinct forms of error in our calculations

Rounding error the error we get by using finite arithmetic during a

computation. [We’ve talked about this exclusively until now.]

Truncation error (a.k.a. discretisation error) the error we get by

stopping an infinitary process after a finite point. [This is new]

Note the general antagonism: the finer the mathematical approximation

the more operations which need to be done, and hence the worse the

accumulated error. Need to compromise, or really clever algorithms

(beyond this course).
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Illustration—differentiation

Suppose we have a nice civilised function f (we’re not even going to look

at malicious ones). By civilised I mean smooth (derivatives exist) and

f(x), f ′(x) and f ′′(x) are around 1 (i.e. between, say, 0.1 and 10 rather

than 1015 or 10−15 or, even worse, 0.0). Let’s suppose we want to

calculate an approximation to f ′(x) at x = 1.0 given only the code for f .

Mathematically, we define

f ′(x) = lim
h→0

(

f(x+ h)− f(x)

h

)

So, we just calculate (f(x+ h)− f(x))/h, don’t we?

Well, just how do we choose h? Does it matter?
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Illustration—differentiation (2)

The maths for f ′(x) says take the limit as h tends to zero. But if h is

smaller than machine epsilon (2−23 for float and 2−52 for double)

then, for x about 1, x+ h will compute to the same value as x. So

f(x+ h)− f(x) will evaluate to zero!

There’s a more subtle point too, if h is small then f(x+ h)− f(x) will

produce lots of cancelling (e.g. 1.259− 1.257) hence a high relative error

(few sig.figs. in the result).

‘Rounding error.’

But if h is too big, we also lose: e.g. dx2/dx at 1 should be 2, but

taking h = 1 we get (22 − 12)/1 = 3.0. Again a high relative error (few

sig.figs. in the result).

‘Truncation error.’
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Illustration—differentiation (3)

Answer: the two errors vary oppositely w.r.t. h, so compromise by

making the two errors of the same order to minimise their total effect.

The truncation error can be calculated by Taylor:

f(x+ h) = f(x) + hf ′(x) + h2f ′′(x)/2 +O(h3)

So the truncation error in the formula is approximately hf ′′(x)/2 [check

it yourself], i.e. about h given the assumption on f ′′ being around 1.
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Illustration—differentiation (4)

For rounding error use Taylor again, and allow a minimal error of

macheps to creep into f and get (remember we’re also assuming f(x)

and f ′(x) is around 1, and we’ll write macheps for machine epsilon):

(f(x+ h)− f(x))/h = (f(x) + hf ′(x)±macheps − f(x))/h

= 1±macheps/h

So the rounding error is macheps/h.

Equating rounding and truncation errors gives h = macheps/h, i.e.

h =
√
macheps (around 3.10−4 for single precision and 10−8 for double).

[See diff float.c for a program to verify this—note the truncation

error is fairly predictable, but the rounding error is “anywhere in an

error-bar”]
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Illustration—differentiation (5)

The Standard ML example in Wikipedia quotes an alternative form of

differentiation:

(f(x+ h)− f(x− h))/2h

But, applying Taylor’s approximation as above to this function gives a

truncation error of

h2f ′′′(x)/3!

The rounding error remains at about macheps/h. Now, equating

truncation and rounding error as above means that say h = 3
√
macheps

is a good choice for h.
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Illustration—differentiation (6)

There is a serious point in discussing the two methods of differentiation

as it illustrates an important concept.

Usually when finitely approximating some limiting process there is a

number like h which is small, or a number n which is large. Sometimes

both logically occur (with h = 1/n)

∫ 1

0

f(x) ≈
(

n
∑

i=1

f(i/n)

)

/n

Often there are multiple algorithms which mathematically have the same

limit (see the two differentiation examples above), but which have

different rates of approaching the limit (in addition to possibly different

rounding error accumulation which we’re not considering at the

moment).
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Illustration—differentiation (7)

The way in which truncation error is affected by reducing h (or

increasing n) is called the order of the algorithm w.r.t. that parameter

(or more precisely the mathematics on which the algorithm is based).

For example, (f(x+ h)− f(x))/h is a first-order method of

approximating derivatives of smooth function (halving h halves the

truncation error.)

On the other hand, (f(x+ h)− f(x− h))/2h is a second-order

method—halving h divides the truncation error by 4.

A large amount of effort over the past 50 years has been invested in

finding techniques which give higher-order methods so a relatively large

h can be used without incurring excessive truncation error (and

incidentally, this often reduce rounding error too).

Don’t assume you can outguess the experts.
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Root Finding

Commonly we want to find x such that f(x) = 0.

Bisection, a form of successive approximation, is a simple and robust

approach.

1. Choose initial values a, b such that sgn(f(a)) != sgn(f(b))

2. Find mid point c = (a+b)/2;

3. If |f(c)| < desired accuracy then stop;

4. If sgn(f(c)) == sgn(f(a)) a=c; else b=c;

5. goto 2.

The absolute error is halved at each step so linear convergence.
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Convergence Iteration: When to stop

Consider the “golden ratio” φ = (1 +
√
5)/2 ≈ 1.618. It satisfies

φ2 = φ+ 1.

So, supposing we didn’t know how to solve quadratics, we could re-write

this as “φ is the solution of x =
√
x+ 1”.

Numerically, we could start with x0 = 2 (say) and then set

xn+1 =
√
xn + 1, and watch how the xn evolve (an iteration) . . .
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Golden ratio iteration

i x err err/prev.err

1 1.7320508075688772 1.1402e-01

2 1.6528916502810695 3.4858e-02 3.0572e-01

3 1.6287699807772333 1.0736e-02 3.0800e-01

4 1.6213481984993949 3.3142e-03 3.0870e-01

5 1.6190578119694785 1.0238e-03 3.0892e-01

. . .

26 1.6180339887499147 1.9762e-14 3.0690e-01

27 1.6180339887499009 5.9952e-15 3.0337e-01

28 1.6180339887498967 1.7764e-15 2.9630e-01

29 1.6180339887498953 4.4409e-16 2.5000e-01

30 1.6180339887498949 0.0000e+00 0.0000e+00

31 1.6180339887498949 0.0000e+00 nan

32 1.6180339887498949 0.0000e+00 nan
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Golden ratio iteration (2)

What we found was fairly typical (at least near a solution). The error ǫn

(defined to be xn − φ) reduced by a constant fraction each iteration.

This can be seen by expressing ǫn+1 in terms of ǫn:

ǫn+1 = xn+1 − φ =
√
xn + 1− φ

=
√

ǫn + φ+ 1− φ

=
√

φ+ 1

√

1 +
ǫn

φ+ 1
− φ

≈
√

φ+ 1

(

1 +
1

2
.

ǫn
φ+ 1

)

− φ (Taylor)

=
1

2
.

ǫn√
φ+ 1

=
ǫn
2φ

(φ =
√
φ+ 1)

≈ 0.3ǫn
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Golden ratio iteration (3)

The termination criterion: here we were lucky. We can show

mathematically that if xn > φ then φ ≤ xn+1 ≤ xn, so a suitable

termination criterion is xn+1 ≥ xn.

In general we don’t have such a nice property, so we terminate when

|xn+1 − xn| < δ for some prescribed threshold δ.

Nomenclature:

When ǫn+1 = kǫn we say that the iteration exhibits “first order

convergence”. For the iteration xn+1 = f(xn) then k is merely f ′(σ)

where σ is the solution of σ = f(σ) to which iteration is converging.

For the earlier iteration this is 1/2φ.
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Golden ratio iteration (4)

What if, instead of writing φ2 = φ+ 1 as the iteration xn+1 =
√
xn + 1,

we had instead written it as xn+1 = x2
n − 1?

Putting g(x) = x2 − 1, we have g′(φ) = 2φ ≈ 3.236. Does this mean

that the error increases: ǫn+1 ≈ 3.236ǫn?
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Golden ratio iteration (5)

Yes! This is a bad iteration (magnifies errors).

Putting x0 = φ+ 10−16 computes xi as below:

i x err err/prev.err

1 1.6180339887498951 2.2204e-16

2 1.6180339887498958 8.8818e-16 4.0000e+00

3 1.6180339887498978 2.8866e-15 3.2500e+00

4 1.6180339887499045 9.5479e-15 3.3077e+00

5 1.6180339887499260 3.1086e-14 3.2558e+00

6 1.6180339887499957 1.0081e-13 3.2429e+00

7 1.6180339887502213 3.2641e-13 3.2379e+00

. . .

32 3.9828994989829472 2.3649e+00 3.8503e+00

33 14.8634884189986121 1.3245e+01 5.6009e+00

34 219.9232879817058688 2.1831e+02 1.6482e+01
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Iteration issues

• Choose your iteration well.

• Determine a termination criterion.

For real-world equations (possibly in multi-dimensional space) neither of

these are easy and it may well be best to consult an expert!
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Newton–Raphson

Given an equation of the form f(x) = 0 then the Newton-Raphson

iteration improves an initial estimate x0 of the root by repeatedly setting

xn+1 = xn − f(xn)

f ′(xn)

See http://en.wikipedia.org/wiki/Newton’s_method for

geometrical intuition – intersection of a tangent with the x-axis.
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Newton–Raphson (2)

Letting σ be the root of f(x) which we hope to converge to, and putting

ǫn = xn − σ as usual gives:

ǫn+1 = xn+1 − σ = xn − f(xn)

f ′(xn)
− σ = ǫn − f(xn)

f ′(xn)

= ǫn − f(σ + ǫn)

f ′(σ + ǫn)

= ǫn − f(σ) + ǫnf
′(σ) + ǫ2nf

′′(σ)/2 +O(ǫ3n)

f ′(σ) + ǫnf ′′(σ) +O(ǫ2n)

= ǫn − ǫn
f ′(σ) + ǫnf

′′(σ)/2 +O(ǫ2n)

f ′(σ) + ǫnf ′′(σ) +O(ǫ2n)

≈ ǫ2n
f ′′(σ)

2f ′(σ)
+O(ǫ3n) (by Taylor expansion)

This is quadratic convergence.
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Newton–Raphson (3)

Pros and Cons:

• Quadratic convergence means that the number of decimal (or

binary) digits doubles every iteration

• Problems if we start with |f ′(x0)| being small

• (even possibility of looping)

• Behaves badly for multiple roots
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Summing a Taylor series

Various problems can be solved by summing a Taylor series, e.g.

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

Mathematically, this is as nice as you can get—it unconditionally

converges everywhere. However, computationally things are trickier.
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Summing a Taylor series (2)

Trickinesses:

• How many terms? [stopping early gives truncation error]

• Large cancelling intermediate terms can cause loss of precision

[hence rounding error]

e.g. the biggest term in sin(15) [radians] is over -334864 giving (in

single precision float) a result with only 1 sig.fig.

[See sinseries float.c.]
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Summing a Taylor series (3)

Solution:

• Do range reduction—use identities to reduce the argument to the

range [0, π/2] or even [0, π/4]. However: this might need a lot of

work to make sin(1040) or sin(2100) work (since we need π to a

large accuracy).

• Now we can choose a fixed number of iterations and unroll the loop

(conditional branches can be slow in pipelined architectures),

because we’re now just evaluating a polynomial.
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Summing a Taylor series (4)

If we sum a series up to terms in xn, i.e. we compute

i=n
∑

i=0

aix
i

then the first missing term will by in xn+1 (or xn+2 for sin(x)). This will

be the dominant error term (i.e. most of the truncation error), at least

for small x.

However, xn+1 is unpleasant – it is very very small near the origin but its

maximum near the ends of the input range can be thousands of times

bigger.
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Summing a Taylor series (5)

Using Chebyshev polynomials [non-examinable] the total error is

re-distributed from the edges of the input range to throughout the input

range and at the same time the maximum absolute error is reduced by

orders of magnitude.

We calculate a new polynomial

i=n
∑

i=0

a′ix
i

where a′i is a small adjustment of ai above. This is called ‘power series

economisation’ because it can cut the number of terms (and hence the

execution time) needed for a given Taylor series to a produce given

accuracy.
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Summing a Taylor series (6)

Run the Matlab/Octave file poly.m from the course web-site to explore

how careless factorisation of polynomials can cause noise.

y0(x) = (x− 1)7

y1(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

Exercise: compare the roughness

in the plot to your own estimate

of the absolute error.
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Why fuss about Taylor . . .

. . . and not (say) integration or similar?

It’s a general metaphor—in six lectures I can’t tell you 50 years of maths

and really clever tricks (and there is comparable technology for

integration, differential equations etc.!). [Remember when the CS

Diploma here started in 1953 almost all of the course material would

have been on such numerical programming; in earlier days this course

would have been called an introduction to “Numerical Analysis”.]

But I can warn you that if you need precision, or speed, or just to show

your algorithm is producing a mathematically justifiable answer then you

may (and will probably if the problem is non-trivial) need to consult an

expert, or buy in a package with certified performance (e.g. NAGLIB,

Matlab, Maple, Mathematica, REDUCE . . . ).
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How accurate do you want to be?

If you want to implement (say) sin(x)

double sin(double x)

with the same rules as the IEEE basic operations (the result must be the

nearest IEEE representable number to the mathematical result when

treating the argument as precise) then this can require a truly Herculean

effort. (You’ll certainly need to do much of its internal computation in

higher precision than its result.)

On the other hand, if you just want a function which has known error

properties (e.g. correct apart from the last 2 sig.figs.) and you may not

mind oddities (e.g. your implementation of sine not being monotonic in

the first quadrant) then the techniques here suffice.
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How accurate do you want to be? (2)

Sometimes, e.g. writing a video game, profiling may show that the time

taken in some floating point routine like sqrt may be slowing down the

number of frames per second below what you would like, Then, and only

then, you could consider alternatives, e.g. rewriting your code to avoid

using sqrt or replacing calls to the system provided (perhaps accurate

and slow) routine with calls to a faster but less accurate one.
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How accurate do you want to be? (3)

Chris Lomont

(http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf) writes

[fun, not examinable]:

“Computing reciprocal square roots is necessary in many

applications, such as vector normalization in video games.

Often, some loss of precision is acceptable for a large increase in

speed.”

He wanted to get the frame rate up in a video game and considers:
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How accurate do you want to be? (4)

float InvSqrt(float x){

float xhalf = 0.5f*x;

int i = *(int*)&x; // get bits for floating value

i = 0x5f3759df - (i>>1); // hack giving initial guess y0

x = *(float*)&i; // convert bits back to float

x = x*(1.5f-xhalf*x*x); // Newton step, repeat for more accuracy

return x;}

His testing in Visual C++.NET showed the code above to be roughly 4

times faster than the naive (float)(1.0/sqrt(x)), and the maximum

relative error over all floating point numbers was 0.00175228. [Invisible

in game graphics, but clearly numerically nothing to write home about.]

Moral: sometimes floating-point knowledge can rescue speed problems.
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Why do I use float so much . . .

. . . and is it recommended? [No!]

I use single precision because the maths uses smaller numbers (223

instead of 252) and so I can use double precision for comparison—I can

also use smaller programs/numbers to exhibit the flaws inherent in

floating point. But for most practical problems I would recommend you

use double almost exclusively.

Why: smaller errors, often no or little speed penalty.

What’s the exception: floating point arrays where the size matters and

where (i) the accuracy lost in the storing/reloading process is

manageable and analysable and (ii) the reduced exponent range is not a

problem.
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Notes for C users

• float is very much a second class type like char and short.

• Constants 1.1 are type double unless you ask 1.1f.

• floats are implicitly converted to doubles at various points (e.g.

for ‘vararg’ functions like printf).

• The ISO/ANSI C standard says that a computation involving only

floats may be done at type double, so f and g in

float f(float x, float y) { return (x+y)+1.0f; }

float g(float x, float y) { float t = (x+y); return t+1.0f; }

may give different results.

So: use double rather than float whenever possible for language as

well as numerical reasons. (Large arrays are really the only thing worth

discussing.)
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Part 6

Some statistical remarks
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How do errors add up in practice?

During a computation rounding errors will accumulate, and in the worst

case will often approach the error bounds we have calculated.

However, remember that IEEE rounding was carefully arranged to be

statistically unbiased—so for many programs (and inputs) the errors

from each operation behave more like independent random errors of

mean zero and standard deviation σ.

So, often one finds a k-operations program produces errors of around

macheps .
√
k rather than macheps .k/2 (because independent random

variables’ variances sum).

BEWARE: just because the errors tend to cancel for some inputs does

not mean that they will do so for all! Trust bounds rather than

experiment.
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Part 7

Some nastier issues
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Ill-conditionedness

Consider solving

x+ 3y = 17

2x− y = 6
i.e.





1 3

2 −1









x

y



 =





17

6





Multiply first equation (or matrix row) by 2 and subtract giving

0x+ 7y = 34− 6

Hence y = 4 and (so) x = 5. Geometrically, this just means finding

where the two lines given by x+ 3y = 17 and 2x− y = 6 intersect. In

this case things are all nice because the first line has slope -3, and the

second line slope 1/2 and so they are nearly at right angles to each other.
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Ill-conditionedness (2)

Remember, in general, that if




a b

c d









x

y



 =





p

q





Then




x

y



 =





a b

c d





−1



p

q



 =
1

ad− bc





d −b

−c a









p

q





Oh, and look, there’s a numerically-suspect calculation of ad− bc !

So there are problems if ad− bc is small (not absolutely small, consider

a = b = d = 10−10, c = −10−10, but relatively small e.g. w.r.t.

a2 + b2 + c2 + d2). The lines then are nearly parallel.

Floating Point Computation 109 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (3)

Consider the harmless-looking




1.7711 1.0946

0.6765 0.4181









x

y



 =





p

q





Solving we get




x

y



 =





41810000 −109460000

−67650000 177110000









p

q





Big numbers from nowhere! Small absolute errors in p or q will be

greatly amplified in x and y.

Consider this geometrically: we are projecting 2-D to nearly 1-D: so

getting back will be tricky.
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Ill-conditionedness (4)

The previous slide was craftily constructed from Fibonacci numbers.

f1 = f2 = 1, fn = fn−1 + fn−2 for n > 2

which means that taking a = fn, b = fn−1, c = fn−2, d = fn−3 gives

ad− bc = 1 (and this ‘1’ only looks (absolute error) harmless, but it is

nasty in relative terms). So,





17711 10946

6765 4181





−1

=





4181 −10946

−6765 17711





As we go further down the Fibonacci sequence the ratio of gradients

gets ever closer.
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Ill-conditionedness (5)

So, what’s the message? [Definition of ‘ill-conditioned’]

This is not just a numerical problem (which it would be if we knew that

the inputs were infinitely accurate). The problem is that the solution

(x, y) is excessively dependent on small variations (these may arise from

measurement error, or rounding or truncation error from previous

calculations) on the values of the inputs (a,b,c,d,p and q). Such systems

are called ill-conditioned. This appears most simply in such matrices but

is a problem for many real-life situations (e.g. weather forecasting, global

warming models).

A sound approach is to form, or to calculate a bound for, (partial)

derivatives of the outputs w.r.t. the inputs
∂x

∂a
, . . . ,

∂x

∂q
,
∂y

∂a
, . . . ,

∂y

∂q
near the point in question. [But this may not be easy!]

Floating Point Computation 112 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (6)

E.g.

∂

∂a







1

ad− bc





d −b

−c a











=
−d

(ad− bc)2





d −b

−c a− (ad− bc)/d





Note that uncertainties in the coefficients of the inverse are divided by

(ad− bc)2 (which is itself at additional risk from loss of significance).

The problem gets drastically worse as the size of the matrix increases

(see next slide).
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Ill-conditionedness (7)

E.g. Matlab given a singular matrix finds (rounding error) a spurious

inverse (but at least it’s professional enough to note this):

A = [[16 3 2 13]

[5 10 11 8]

[9 6 7 12]

[4 15 14 1]];

>> inv(A)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.796086e-18.

ans = 1.0e+15 *

0.1251 0.3753 -0.3753 -0.1251

-0.3753 -1.1259 1.1259 0.3753

0.3753 1.1259 -1.1259 -0.3753

-0.1251 -0.3753 0.3753 0.1251

Note the 1015 !!

Floating Point Computation 114 Lent 2012–13 (R0)



UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (8)

There’s more theory around, but it’s worth noting one definition: the

condition number : essentially the ratio of relative error in the output to

that of the input.

A problem with a low condition number is said to be well-conditioned.

Some algorithms are backwards stable meaning an inverse algorithm

exists that can accurately regenerate the input from the output.

Backwards stability generally implies well-conditionedness.

A general sanity principle for all maths routines/libraries/packages:

Substitute the answers back in the original problem and see to

what extent they are a real solution.
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Monte Carlo techniques and Ill-conditionedness

If formal methods are inappropriate for determining conditionedness of a

problem, then one can always resort to Monte Carlo (probabilistic)

techniques.

Take the original problem and solve.

Then take many variants of the problem, each varying the value of one

or more parameters or input variables by a few ulps or a few percent.

Solve all these.

If these all give similar solutions then the original problem is likely to be

well-conditioned. If not, then, you have at least been warned of the

instability.
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Adaptive Methods

I’m only mentioning these because they are in the syllabus, but I’m

regarding them as non-examinable this year.

Sometimes a problem is well-behaved in some regions but behaves badly

in another.

Then the best way might be to discretise the problem into small blocks

which has finer discretisation in problematic areas (for accuracy) but

larger in the rest (for speed).

Sometimes an iterative solution to a differential equation (e.g. to

∇2φ = 0) is fastest solved by solving for a coarse discretisation (mesh)

and then refining.

Both these are called “Adaptive Methods”.
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Chaotic Systems

Chaotic Systems [http://en.wikipedia.org/wiki/Chaos theory]

are just a nastier form of ill-conditionedness for which the computed

function is highly discontinuous. Typically there are arbitrarily small

input regions for which a wide range of output values occur. E.g.

• Mandelbrot set, here we count the number of iterations, k ∈ [0..∞],

of z0 = 0, zn+1 = z2n + c needed to make |zk| ≥ 2 for each point c

in the complex plane.

• Verhulst’s Logistic map xn+1 = rxn(1− xn) with r = 4

[See http://en.wikipedia.org/wiki/Logistic map for why this

is relevant to a population of rabbits and foxes, and for r big enough

(4.0 suffices) we get chaotic behaviour. See later.]
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Mandelbrot set
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Part 8

Alternative Technologies to Floating

Point

(which avoid doing all this analysis,

but which might have other problems)
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Alternatives to IEEE arithmetic

What if, for one reason or another:

• we cannot find a way to compute a good approximation to the exact

answer of a problem, or

• we know an algorithm, but are unsure as to how errors propagate so

that the answer may well be useless.

Alternatives:

• print(random()) [well at least it’s faster than spending a long

time producing the wrong answer, and it’s intellectually honest.]

• interval arithmetic

• arbitrary precision arithmetic

• exact real arithmetic
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Interval arithmetic

The idea here is to represent a mathematical real number value with two

IEEE floating point numbers. One gives a representable number

guaranteed to be lower or equal to the mathematical value, and the other

greater or equal. Each constant or operation must preserve this property

(e.g. (aL, aU )− (bL, bU ) = (aL − bU , aU − bL) and you might need to

mess with IEEE rounding modes to make this work; similarly 1.0 will be

represented as (1.0,1.0) but 0.1 will have distinct lower and upper limits.

This can be a neat solution. Upsides:

• naturally copes with uncertainty in input values

• IEEE arithmetic rounding modes (to +ve/-ve infinity) do much of

the work.
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Interval arithmetic (2)

This can be a neat solution to some problems. Downsides:

• Can be slow (but correctness is more important than speed)

• Some algorithms converge in practice (like Newton-Raphson) while

the computed bounds after doing the algorithm can be spuriously far

apart.

• Need a bit more work that you would expect if the range of the

denominator in a division includes 0, since the output range then

includes infinity (but it still can be seen as a single range).

• Conditions (like x < y) can be both true and false.
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Arbitrary Precision Floating Point

Some packages allow you to set the precision on a run-by-run basis. E.g.

use 50 sig.fig. today.

For any fixed precision the same problems arise as with IEEE 32- and

64-bit arithmetic, but at a different point, so it can be worth doing this

for comparison.

Some packages even allow allow adaptive precision. Cf. lazy evaluation:

if I need e1 − e2 to 50 sig.fig. then calculate e1 and e2 to 50 sig.fig. If

these reinforce then all is OK, but if they cancel then calculate e1 and e2

to more accuracy and repeat. There’s a problem here with zero though.

Consider calculating
1√
2
− sin(tan−1(1))

(This problem of when an algebraic expression really is exactly zero is

formally uncomputable—CST Part Ib has lectures on computability.)
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Exact Real Arithmetic

This term generally refers to better representations than digit streams

(because it is impossible to print the first digit (0 or 1) of the sum

0.333333 · · ·+ 0.666666 · · · without evaluating until a digit appears in

the sum which is not equal to 9).

This slide is a bit vestigial – I’d originally planned on mentioning to

Part Ib the (research-level) ideas of using (infinite sequences of linear

maps; continued fraction expansions; infinite compositions of linear

fractional transformations) but this is inappropriate to Part Ia
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Exact Real Arithmetic (2)

Results of Verhulst’s Logistic map with r = 4 (this is a chaotic function)

by Martin Plume (Edinburgh):

Iteration Single Precision Double Precision Correct Result

1 0.881836 0.881836 0.881836

5 0.384327 0.384327 0.384327

10 0.313034 0.313037 0.313037

15 0.022702 0.022736 0.022736

20 0.983813 0.982892 0.982892

25 0.652837 0.757549 0.757549

30 0.934927 0.481445 0.481445

40 0.057696 0.024008 0.024009

50 0.042174 0.629402 0.625028

60 0.934518 0.757154 0.315445

Correct digits are underlined (note how quickly they disappear).
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Pi to a trillion decimal places

In 2007 Yasumasa Kanada (Tokyo) exploited

π = 48 tan
−1

(

1

49

)

+128 tan
−1

(

1

57

)

−20 tan
−1

(

1

239

)

+48 tan
−1

(

1

110443

)

with

tan−1(x) =
x

1
− x3

3
+

x5

5
− x7

7
+ · · ·

and an 80,000 line program to break the world record for π digit

calculation (1.2 trillion decimal places of accuracy).

[September 2010 - N Sze used Yahoo’s Hadoop cloud computing

technology to find two-quadrillionth digit - the 2,000,000,000,000,000th

digit ]

Floating Point Computation 127 Lent 2012–13 (R0)


