The set of rule instances $\mathbf{TC}(R)$ for the transitive closure of a relation $R \subseteq U \times U$ is given by

$$\begin{array}{c} \hline (a,b) & (a,b) \in \mathbb{R} \\ \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (a,b) & (b,c) \\ \hline (a,c) \\ \end{array}$$

$$\begin{array}{c} \hline (b,c) \\ \hline (b,c) \\ \end{array}$$

$$\begin{array}{c} \hline (b,c) \\ \hline (b,c) \\ \end{array}$$

$$\begin{array}{c} \hline (b,c) \\ \hline (b,c) \\ \end{array}$$

$$\begin{array}{c} \hline (b,c) \end{array}$$

$$\begin{array}{c} \hline (c,c) \end{array}$$

$$\begin{array}{c}$$

Cleim $I_{TC(R)} = R^T$. We show (i) Iteles S R+ and (ii) R+S ITELS. (i) $I_{TC(R)} \subseteq R^+ = def O_{NEW} R^n$ Since NEWMETHOD 1 JTE(R) is The least TC(R)-closed set. It is enough to show That R is TC(R.)- dosed Equivalently That (1) RER⁺ and (2) R⁺ is transitive For (1): RERURZU --- URⁿU --- = R⁺ and we are done.

 $F_{1}(2):$

Relates two elements when ever there is a path of length n (263) ER them. We need show: 2 $(z,y) \delta R^+, (y,z) \delta R^+ \longrightarrow$ Rn Suppose (2, 1), (4, 2) 6R+ = (n60) Rn+1 = Rn oR Then (z,y) & R for some kow and (y,) & R for forme LON $R^{2} = R \circ R$ $= \{(a,c)\} \neq b = \frac{aRb}{bRc}$ Hence (z, z) GR K+R GR+ $\begin{array}{c} R^{3} = k^{2} \\ R = k^{2} \\ R \\ = \begin{cases} (a,d) \mid \exists c \\ c \ R \\ d \end{cases}$ $\delta \sigma(x_1 t) \in R^{+}$ = { lad]] Je Jb bre ? c Rd

METHOD 2: ITCR) CR+ 4 (ab) & IIC(B). (ab) & CR+ P(a,b) Show P(a,b) fn all (a,b) & Itc(R) by induction: (1) + (a, 5) ER. P(a, b) $(ii) \forall (ab), (b,c) \in J_{TC(K)} \cdot P(a,b) k P(b,c) \Rightarrow P(a,c)$ This is shown as before.

Show: $R^{+} \subseteq I_{T(R)}$. equivalently $\forall (e, b) \in R^{+}$. $(R \cdot b) \in I_{T(R)}$ $R^{+} = \bigcup_{n \in \mathbb{N}} R^{n} \qquad \qquad \begin{array}{c} \underset{k \in \mathbb{N}}{\underset{k \in \mathbb{N}}}{\underset{k \in \mathbb{N}}}}}}$ H H K $R^{n} \subseteq I_{TC(R)}$ (X)We show (*) by induction on nEW.

Base cose: $R^1 \subseteq I_{TC}(R)$. R¹ = R and The assion rule in Stares (a,b) tRmply RSITE(B). Industore stop: Assung Rⁿ C ITC(R) fr n GAV We need show Rnd G ITC(B). Induction hypothesis: $R^{n} \subseteq I_{TC}(R)$.

Lemma 27 $R^{nH} = R^n \circ R$ $S_1 \subseteq T_1$ $S_2 \subseteq T_2$ CITCR, R $S_1 \circ S_2 \subseteq T_1 \circ T_2$ by molactro hyp. & Lemna E ITA(RID ITC/R) because RE ITC(R) le Lemma Lemma Arelation $\subseteq I_{TC(R)}$ Sis transitive off by ITC(R) bling (B)-closed and SoSSS Umna

Another proof for RNH C ITCR, $F(a,b) \in \mathbb{R}^{n \times n}$. $(a,b) \in \mathbb{Z}_{T \leq B}$. Let $(a,b) \in \mathbb{R}^{n+1}$. So $(a,c) \in \mathbb{R}^n$ and $(c,b) \in \mathbb{R}$ for some c. So by induction hypothesis (a, c) & IT(R) did by The osciens ne sloo hore $(c, b) \in I_{TC}(R)$. Then by The rule (a, c) (c, b)(a,b) we have $(a, b) \in I_{TC}(R)$

Exercise:

- 1. Write the closure property of the inductively defined set $I_{TC(R)}$.
- 2. Write the principle of induction for the inductively defined set $I_{TC(R)}$.
- 3. Use the above to show that

 $\forall z \in U. (y, z) \in I_{\mathbf{TC}(R)} \Rightarrow (x, z) \in I_{\mathbf{TC}(R)}$ for all $(x, y) \in I_{\mathbf{TC}(R)}$ That is, that $I_{\mathbf{TC}(R)}$ is transitive.

Derivation Trees $(a_{1}c) \in \mathcal{K}$ $(a_{1}c) \in \mathcal{K}$ Erouple: $(c_1 b)$ (a,b)Formolly: (1) In all aroines (Ø,g) we have a derivation The (2) For all rules ({zx,--, xn?/y}, given derivation [t.]... In ne hore hees

The induced deroration Theo

Induction on Derivations

Let P be a property of derivations.

```
If

P holds for all axioms (\emptyset/y)

and

for each rule instance (\{x_1, \dots, x_n\}/y),

for all derivations d_i of x_i for 1 \le i \le n, P holding

for d_1, \dots, d_n implies that P holds for (\{d_1, \dots, d_n\}/y)
```

then

P holds for all derivations

Fundamental Property:

An element is in I_R iff there is an R-derivation of it.