Rule Instances

▶ <u>Rule instances</u> are pairs

Example Let 11 be a set.

(a,a) aeU

(X/y)

(a,b) (bja)

where X is a set of *premises* and y is a *conclusion*.

(a,b) (b,c)(a,c)

Rule Instances

Rule instances are pairs

(X/y)

where X is a set of *premises* and y is a *conclusion*.

A set of rule instances R specifies a way to build a set:

Each rule instance (X/y) in R, stipulates that if all the elements of X are in the set then so is y.

For the example, a set $S \subseteq U \times U$ is closed whenever: $k \stackrel{(2)}{(2)} \forall (a,b) \in S \cdot (b,a) \in S$ $k \stackrel{(3)}{(3)} \forall (a,b), (b,c) \in S \cdot (a,c) \in S$

Rule Instances

▶ <u>Rule instances</u> are pairs

(X/y)

where X is a set of *premises* and y is a <u>conclusion</u>.

► A set of rule instances **R** specifies a way to build a set:

Each rule instance (X/y) in R, stipulates that

if all the elements of X are in the set then so is y.

There is a least set with the above property! We denote it I_R and called it the set inductively defined by the rule instances R.

Closed Sets

 \emptyset is \mathbb{R} -doed whenever $\Psi(X/g) \in \mathbb{R}$. $X \subseteq \mathbb{Q} \Rightarrow \mathcal{Y} \in \mathbb{Q}$ Let Q. & Q. 2 be closed. Closin: Q1 A2 is closed. Assul (X/y) ER and support X. EQINGZ. We need than That y & Q1 AQ2 Since X & Q1 AQ2 we have X & Q1 and since Q1 is direct ys Q1. Anorlogously XCQ2 Johns 76 Q2. Hence y6411)62. This as purent works fromy family of closed sets. In particular we can consider the formily I all doud ats.

Inductively-Defined Sets IR= 1 SQI & is R-cloed? r(1) IR is R-dored (2) Fnall R-doxed sto Q, IREQ. -Jøres a way of exhibiting elements of IR. To show IREQ ? A proof principle Show instead R-closed ?

(mysder Q= {x + IR | P(x) } C IR

General Principle of Rule Induction

For I_R the set inductively defined by a set of rule instances R, if for each rule instance (X/y) in R, $(\forall x \in X. x \in I_R \& P(x)) \Rightarrow P(y)$ then P(z) holds for all $z \in I_R$ equivated $I_R \subseteq Q$

Finitary Rule Instances They have a finite nuber of premises. Example Therales for finitely branching Trees. FBT: t1,..., th nENo, a GA ti ··· /th

Take A=[2]

I FRT ~ is FBT-closed

That is

Men. bij-., the IPBT.

=> 0[t1,-.., tn] + IFBT

1(ti-... +n) 6IFBT

Then I FRT contains

0[],1[],0[0[],1[],0[]],...

Finitary Closure

For I_R the set inductively defined by a set of <u>finitary</u> rule instances R,

```
for each axiom ( /y), y \in I_R
```

and

for each rule instance $(\{x_1, \ldots, x_n\}/y)$, if $x_i \in I_R$ for all $1 \le i \le n$ then $y \in I_R$

Finitary Principle of Rule Induction

For I_R the set inductively defined by a set of <u>finitary</u> rule instances R,

if

```
for each axiom (/y),
P(y) holds
and
```

for each rule instance $(\{x_1, \dots, x_n\}/y)$, $x_i \in I_R$ and $P(x_i)$ for all $1 \le i \le n$ implies P(y)

then

```
P(z) holds for all z \in I_R
```


Examples:

Principle of mathematical induction
If P(zero) holds
and
for all $n \in I_{Nat}$, $P(n) \Rightarrow P(\operatorname{succ}(n))$ then

P(k) holds for all $k \in I_{\mathbf{Nat}}$

$$\sum_{\substack{\varepsilon \\ \alpha \cdot s}} \underbrace{f}_{\alpha \cdot s} \xrightarrow{s}_{\alpha \cdot s} \underbrace{f}_{\alpha \cdot s}$$

• Principle of induction for strings
If

$$P(\varepsilon) \text{ holds}_{\alpha \cdot s}$$
and
for each character a,
for all $s \in I_{\text{String}}, P(s) \Rightarrow P(\alpha.s)$
then

$$P(w) \text{ for all } w \in I_{\text{String}}$$

Principle of induction for Boolean propositions. lf a P(a) holds, for all propositional variables a and P(T) holds and AB AB AAB AVB P(F) holds and for all $A, B \in I_{BoolProp}$, $P(A) \& P(B) \Rightarrow P(A \land B)$ and for all $A, B \in I_{BoolProp}$, $P(A) \& P(B) \Rightarrow P(A \lor B)$ and for all $A \in I_{BoolProp}$, $P(A) \Rightarrow P(\neg A)$ then P(X) holds for all $X \in I_{BoolProp}$

Exercise: Write the principle of induction for the inductively defined set of *regular expressions* given by the rules:

a a symbol a	ε	Ø
r s	r s	r
rs	r.s	r^*

 $\begin{cases} S \subseteq U \times U \text{ is } T_{C}(R) - closed \\ (1) \forall (a, b) \in R \cdot (a, b) \in S (equivalently R \subseteq S) \\ k (2) \forall (a, b), (b, c) \in S \cdot (a, c) \in S (equivalently S is Non-sitive) \\ Transitive Closure \end{cases}$

The set of rule instances $\mathbf{TC}(R)$ for the transitive closure of a relation $R \subseteq U \times U$ is given by

1) (1)

$$(a,b) \in \mathbb{R}$$

$$(a,b) (b,c)$$

$$(a,c)$$

$$(a,c)$$

$$(claim: I_{TC(\mathbb{R})} = \mathbb{R}^{+}$$

$$\mathbb{R}^{+} =_{def} \bigcup_{n \in \mathbb{N}} \mathbb{R}^{n}$$

$$(b,c)$$

$$(a,c)$$

$$(a,c)$$