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Unlimited Size

Diagonalisation Theorem: For sets N and X, if there
exists a surjective function N — (N = X) then every
function in (X = X) has a flxed point. Hence, X = [1].
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Two corollaries: Let D be a set.

» There is no surjection D — P(

D). —

» There exists a surjection D — (D = D) iff D = [1].
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Chapter 5

Reading list:

5.1 Sets defined by rules—examples
5.2 Inductively defined sets

5.3 Rule induction

5.4 Derivation trees

Suggested exercises: 5.1, 5.5,5.6, 5.7, 5.8, 5.9, 5.10,
5.11,5.12



Inductive Definitions
— Idea —
Sets described by stipulating that:
1. certain elements are In the set:

2. new elements are specified as generated from old ones;

3. no other elements are in the set.



Examples:

» Natural numbers in ML

datatype

Nat = zero | succ of Nat



Examples:

» Natural numbers in ML

datatype

Nat = zero | succ of Nat

» Strings in ML

datatype

String = empty | prefix of char * String



» Grammar of Boolean proposition

A,B,... (Boolean propositions)
= a,b,... (propositional variables)
T|F (propositional constants)
A /B (conjunction)
AV B (disjunction)
—A (negation)




Rules
— an ubiquitous formalism —

Examples:

» The rules Nat for natural numbers

n

Zero succ(m)

» The rules String for strings

S

a a character
E a.s



» The rules BoolProp for Boolean propositions

—— a a propositional variable
a

/

b, S

K A B A B A

A AN\B AV B —A
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Rule Instances

» Rule instances are pairs

(X/y)

where X is a set of premises and y is a conclusion.




Rule Instances Wf&

» Rule instances are pairs

(X/y)

where X is a set of premises and y is a conclusion.

» A set of rule instances R specifies a way to build a set:

Each rule instance (X/y) in R, stipulates that

If all the elements of X are in the set then so is y.

» There is a least set with the above property! We denote
it Iz and called it the set inductively defined by the rule
Instances R.




Closed Sets
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