Countable Sets

The prototypical infinite countable sets: $\mathbb{N}_{0}, \mathbb{N}$.

For a set S, the following are equivalent:

1. S is finite or there is a bijection $\mathbb{N} \rightarrow S$.
2. There is a bijection $A \rightarrow S$ for $A \subseteq \mathbb{N}$.
3. There is an injection $S \rightarrow \mathbb{N}$.
4. S is empty or there is a surjection $\mathbb{N} \rightarrow S$.

Countable sets are those for which the above hold.

For an infinite set S, the following are equivalent:

1. There is a bijection $\mathbb{N} \rightarrow S$
2. There is an injection $S \rightarrow \mathbb{N}$
3. There is a surjection $\mathbb{N} \rightarrow S$
$(3) \Rightarrow(4)$ Key Lemma For very injection $f: A \rightarrow B$, The inverse relation $f^{-1} \subseteq B \times A$ (green by $b f^{-1} a$ iffdel $\left.f(a)=b\right)$ is a
partied surjective fuction \qquad
Assme thre is on
in jection

$$
S \xrightarrow[f]{\rightarrow} N
$$

Consider the por tacl surjective fuction

is a portid fuction
That is moseser surgechive

$$
f^{-1}: \mathbb{N} \rightharpoonup S
$$

and dupine $g: N \rightarrow S$ green by $g(n)= \begin{cases}f^{-1}(n) & n \in \text { donen } \\ \Delta & o t_{w}\end{cases}$
$(4) \Rightarrow(1)$ If thene is a surgection $W^{e} \rightarrow S$
ahn There is a bjection $\mathbb{N} \stackrel{f}{\rightarrow} S$.
$e \quad e(0), e(1), \ldots, e(x), \ldots$

$$
\left.f \quad e(0),<\frac{1}{w_{y}}\left(1 \mid \neq t_{0}\right) T_{h e} \text { es }\right)
$$

NB We have mitroduced a new operation
Founally, defin $f(0)=e(0)$

$$
f(n+1)=e\left(\min _{1}\{k s+e(k) \neq \min (0), f(f), \text {, or } f(n)\}\right)
$$

$$
\begin{aligned}
& 23=[1+2+\cdots+6] \text { Define } \\
& N_{0} \times N_{0} \xrightarrow{b_{j}} N_{0} \\
& (i, j) \longmapsto \frac{(i+j)(i+j+1)}{2}+i
\end{aligned}
$$

The set $\approx P(\mathbb{N})$ \qquad
$(\mathbb{N} \Rightarrow[2])$ Uncountable Sets $(0,1)$ is un con able
Ts uncounTable！
（1）Basic row is to think of function $f: \mathbb{N} \rightarrow[2]$ as的finte bit streams．

$$
\begin{aligned}
& \text { finite bit shresurs. } \\
& f: f(0), f(1), f(2), \ldots, f(n), \ldots \quad(n \in N)
\end{aligned}
$$

（2）Proceed by contradiction：
Assume The set $(N) \Rightarrow[23)$＂of infinite but streams＂ is com table．
So There is an enumeration of then n say

$$
e: \mathbb{N} \xrightarrow[\text { subj }]{ }(\mathbb{N} \Rightarrow[2])
$$

Pictorially

Clan: There is a bit stream β that io not in this emmeration. That in $\beta \neq e_{n}$ for all n $\beta: \overline{e_{0}(0)}, \overline{e_{1}(1)}, \overline{e_{i}(2)}, \cdots, \overline{e_{n}(n)}, \ldots$

Define

$$
\beta(n)=\overline{e_{n}(n)} \Rightarrow \beta \neq e_{n}
$$

$$
\begin{aligned}
& \text { because } \beta \text { and en } \\
& \text { differ in the } n^{\text {th }} \text { bit } \\
& \text { by construction of } \beta \text {. }
\end{aligned}
$$

Hence e is not a surjectore em-nerdoron. A contradiction y
Corollary: There are non-computable infinite bit streams.

Chapter 4

Reading list:
4.1 Russell's paradox
4.2 Constructing sets
4.3 Some consequences

Suggested exercises: 4.4, 4.5, 4.6, 4.7, 4.8, 4.9

Russell's Paradox
The construction $\{x \mid x \notin x\}$ should not yield a set!

Constructions on Sets

Basic sets:

- $\{0,1\}$
- $\{a, b, c, \ldots, x, y, z\}$
- $\mathbb{N}_{0}=$ def $\{0,1,2, \ldots\}$

Comprehension:
For every set X and property $P(x)$ for x ranging over X, we, can form the set

Example:
formally $\begin{aligned} & \{2 m+1 \mid m \in \mathbb{N} \text { and } m>1\} \\ & \{k \in \mathbb{N} \mid \exists m \in \mathbb{N}, m>1 \& k=2\end{aligned}$

$$
\{k \in \mathbb{N} \mid \exists m \in \mathbb{N} . m>1 \& k=2 m+1\}
$$

Powerset:

For every set X, we can form the set

$$
\mathcal{P}(X)=_{\operatorname{def}}\{S \mid S \subseteq X\}
$$

consisting of all the subsets of X.

