Injective functions
Def A suction $f: A \rightarrow B$ is in jective whenever The set of all injections for all $a \neq a^{\prime}$ in A, we hose $f(x) \neq$ P $^{\prime} \boldsymbol{a}^{\prime}$ from A
$t \rightarrow B$
Soy $\# A=n, A B=m, ? ? \operatorname{In} j(A, B]$?

$$
\begin{gathered}
x_{m-1}^{m} \\
x_{m-2} \\
x_{\ldots}
\end{gathered}
$$

Examples:..
aviation

$$
\begin{aligned}
m^{n} & =d f m \times(m-1) \times \cdots \times(m-n+1) \\
& =\binom{m}{n} \times n!
\end{aligned}
$$

Let $f: A \rightarrow B$ be a function

$$
\# A=n
$$

$\angle B=m$

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& f_{2}^{\prime} \searrow f(A) \\
& f^{\prime}(x)=y f(a) \geqslant \operatorname{lug}^{d a y}\{b \in B \mid \exists a \in A . f(0)=b\}
\end{aligned}
$$

is a surjection

$$
\begin{aligned}
& \quad \text { id Surjection } \quad \sum_{k} S(n, k) \times k!\binom{m}{k} \\
& \#(A \Rightarrow B)=m^{n} \\
& \| \sum_{k} S(m, k) \\
& \| \sum_{K \subseteq B} \# \operatorname{Sur}(A, K)=\sum_{k} \# \# \operatorname{Sur}(n, k) \times\binom{ m}{k}
\end{aligned}
$$

An imporkant symklic identity

$$
x^{n}=\sum_{k} S(n, k) \times x^{k}
$$

Images
For a relation $R \subseteq A \times B$, one defines the \ldots
Direct image:

$$
\left.\left.\begin{array}{ll}
R[\cdot]: P(A) \rightarrow \mathcal{P}(B) \\
R[S]=\{b \in B \mid \exists a \in S \cdot a R b
\end{array}\right\} S \subseteq A\right\}
$$

EXERCise show that it is an injection.

Images

For a relation $R \subseteq A \times B$, one defines the \ldots
Direct image:

$$
\mathrm{R}[\cdot]: \mathcal{P}(\mathrm{A}) \rightarrow \mathcal{P}(\mathrm{B})
$$

Inverse image: = direct imagle of the inverse.

$$
\mathrm{R}^{-1}[\cdot]: \mathcal{P}(\mathrm{B}) \rightarrow \mathcal{P}(\mathrm{A})
$$

$n \in \mathbb{N}$
Finite Sets $[n]=\{0,1,2, \ldots, n-1\}$
The prototypical finite sets:

$$
\#[n]=n \frac{\text { termiuslogn }}{\text { ORtiviAls }}
$$

$$
\left\{\begin{array}{cll}
{[0]} & =_{\operatorname{def}} & \emptyset \\
{[n+1]} & ={ }_{\operatorname{def}} & {[n] \cup\{n\} \quad\left(n \in \mathbb{N}_{0}\right)}
\end{array}\right.
$$

Def Aset io finuto if it is in bijection wot some $[n]$ for $n \in \mathbb{N}_{0}$.

EXERGEAS
Cardinality

1. $[n] \times[m] \cong[n \cdot m]$ \qquad
2. $\mathcal{P}([n]) \cong\left[2^{n}\right]$

$$
P[n] \cong([n] \Rightarrow[2]) \quad 2^{n}
$$

3. $([n]=[m])$ $P[n] \cong([n] \Rightarrow[1])(m+1)^{n}$
4. $([n] \Rightarrow[m])$ \qquad m^{n}
5. $\operatorname{Bij}([n],[m])$
6. $\operatorname{Inj}([n],[m])$ \qquad m^{n}
7. $\operatorname{Sur}([\mathrm{n}],[\mathrm{m}])$ \qquad $S(n, m) m!$
8. $[n] \cup[m] \cong[\max (n, m)]$ \qquad $m a s(n, m)$
9. $[n] \cap[m] \cong[\min (n, m)]$ \qquad $\min (n, m)$

$$
\# A=n \quad \angle B=m \quad \frac{\text { EXERCise }}{P[n] \cong([n] \Rightarrow[1])}
$$

To gre
$A \underset{f}{\longrightarrow} B \quad$ partial fiction
is to gree
a subset of A, sol y D (mo moly The domain of definition of f) and a (t ola) function from D To B

$$
\#(A \supset B)=\sum_{k}\binom{n}{k} \times m^{k}=(m+1)^{n}
$$

Countable Sets

The prototypical countable sets: $\mathbb{N}_{0}, \mathbb{N}$.

Countable Sets

The prototypical countable sets: $\mathbb{N}_{0}, \mathbb{N}$.

For a set S , the following are equivalent:

1. S is finite or there is a bijection $\mathbb{N} \rightarrow S$.
2. There is a bijection $A \rightarrow S$ for $A \subseteq \mathbb{N}$.
$(1) \Rightarrow(2)$ $(2) \Rightarrow(3)$
$A \underset{f}{\stackrel{\leftrightarrows}{7} S}$ fo $A \leq \mathbb{N}$
3. There is an injection $S \rightarrow \mathbb{N}$. $(3) \Rightarrow(4)$
4. S is empty or there is a surjection $\mathbb{N} \rightarrow S$.

Countable sets are those for which the above hold.

If There an injution $S \rightarrow \mathbb{N}$ then either δ ad on There is a surjection $\mathbb{N} \xrightarrow{e} \delta$.

Assure Sis non-eupty
That is there is on etenet $s \in S$.
Let $f: S \rightarrow \mathbb{N}$ be an injection
\# for all $n \in \mathbb{N}$ esther there is no $x \in 5$ such that $f(x)=n$ fe there is exactly
one, call $-t \varepsilon_{n} \in S$.
Define

