Bisections
$f: A \rightarrow B$ in abjection whenever it has an inverse
a function $g: B \rightarrow A$
s.7. $\quad \Omega \circ f=d_{A} \& f \circ g=D_{B}$.

NB: If foes on verse The it is migue. An if gad Fo are beth inverses of f then
$L \begin{aligned} & g=g o r d=\text { go for }=\text { id a } h=h \\ & \text { The notation for the nurse of f, whenever } t \text { expo } T_{0} \text {, }\end{aligned}$乃 f^{-1}

If $A A=n$ and $A B=m$,

$$
\text { \# Bif }(A B)= \begin{cases}0 & n \neq m \\ n! & n=m\end{cases}
$$

The set of all biectigns from A to B ?

Bojection are abo calle d permiations or sonnorblinsuo.

$$
\begin{aligned}
& \operatorname{EgRt}(A) \frac{\pi}{\frac{\pi}{\cong}} \frac{\operatorname{Bar} \phi}{\varepsilon}(A) \xrightarrow{\begin{array}{c}
\text { notation fon } \\
\text { bijections }
\end{array}} \\
& \pi(R)=\left\{[a]_{R} \mid a \in A\right\} \\
& \text { (where }[a]_{R}=\{x \in A \mid x R a\} \\
& \text { typicaly denoted } A / R \sim \text { The quotient of } A \\
& \text { moder R } \\
& A=\mathbb{Z} \times \mathbb{N} \text { defins }(p, q) \equiv\left(p_{1}^{l}, q^{\prime}\right) \text { io de equirdhe } \\
& \text { ithem } p \times q^{\prime}=p^{\prime} \times q \text { Melotion }
\end{aligned}
$$

Consider $(\mathbb{Z} \times N) / \equiv \underset{\text { Exerase. }}{\cong} \mathbb{Q}$

$$
\begin{array}{ll}
\mathbb{Q} \rightarrow(Z \times N) & (\mathbb{Z} \times N) / \equiv \longrightarrow \mathbb{Q} \\
p / q \nmid[(p, q)]_{\equiv} \quad[(p, q)]_{\equiv} \longrightarrow p / q
\end{array}
$$

$$
\begin{aligned}
& \# A=n \quad \# \operatorname{Porz}(A)=\sum_{k} S(n, k) \\
& S(n, 0)=\left\{\begin{array}{lll}
0 & n \neq 0 & \text { The nimber of pation of } \\
1 & n=0 & \text { on } n \text { elenent set into } k
\end{array}\right. \\
& S(n, 1)=1
\end{aligned}
$$

$\overline{S(n+1, k+1)}$ String number of the second kind.

$$
\begin{aligned}
& S(n+1, k+1) \\
& =S(n, k)+S(n, k+1) \times(k+1) 123 \ldots n \quad n+1
\end{aligned}
$$

case 1
nos in in a block on to own

$$
\begin{aligned}
& 123 \cdots n \\
& S(n, k)
\end{aligned}
$$

Cosec Not is not in a block of to own.

$$
S(n, k+1) \times(k+1)
$$

Ter mustogh The image of f f $A \rightarrow B$
Surjective functions del biectale $f(A)=\operatorname{dy}\{f(a) \mid a, E A\} \subseteq B$
? What can we say about the codomain of a bijective function?
Def $f: A \rightarrow B$ is sufjestre if the follonig eprivalest condition nold:

- $f(A)=B$
- $\forall b \in B, F_{a} \in A$. $f(c)=b$.

Examples: ...
Letre be an equiralua nelotion on A. Then The quostreat function eq! $A \rightarrow A / R$ defrooteds $q(a)=[a]_{R}$ is a sufjection

Let $\operatorname{sur}(A, B)$ be the ret of surjection from A toB $\# A=n, \quad A B=m \quad \# \operatorname{Sur}(A, B)=?$ Let $f: A \rightarrow B$ be rurjectore eqwivdutly, an indeed
 $\# \operatorname{Sur}(A, B)=S(n, m) \times m!$
when wo two apits produce the some
Injective functions
Def $f: A \rightarrow B$ is in jective
Ithey $\forall a, a^{\prime} \in A$. $f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime}$.
If $\forall a \neq a^{\prime}$ in A. f(alp fer).

Examples: \ldots.
(1) Evefy bigection io du injection

(2) Everym melusion is du ohjection: for $A \subseteq B$ the function $i: A \longrightarrow B$ opolen by $i[a]=a$ is on injection.

Claim Every infective function $f: A \rightarrow B$ de con poses a the comparition of a bijection followed by on indusion

bijection
Consider I To be the in age of f; That is

$$
I=f(A)=\{f(a) \mid a \in A\} \subseteq B
$$

Exanple

Def:

$$
\begin{aligned}
& f^{\prime}: A \longrightarrow f(A) \downarrow \text { This in bije-tore becouseff } \\
& f^{\prime}(a)=\text { all } f(x) \quad \text { inective }
\end{aligned}
$$

And

biection

$$
\begin{aligned}
\# \operatorname{Ing}(A, B) & =n!\cdot\binom{m}{n} \\
& =m \times(m-1) \times \cdots \times(m-n+1)
\end{aligned}
$$

$$
B B=m
$$

nothon m^{n} The $n^{\text {Th }}$ FAcLiNG power of m

