(Todd) Functions

- A function is a partial function defined on every element of the domain; that is, .
Del A function f from A 充 $B($ notation $f: A \rightarrow B)$ to a partial function $f: A \supset B$ such that $\operatorname{don}(f)=A$

$$
\text { Examples: } \left\lvert\, \begin{aligned}
& \text { Every relation } R \text { from } A \text { to } B \\
& \text { induces a function from } A \text { to } P(B)
\end{aligned}\right.
$$

Given $f: A \rightarrow P(B)$
$\operatorname{rel}(\operatorname{fm}(R))=$? f
def $\begin{aligned} & \forall a=A, b \in B,(a, b) \in \operatorname{rel}(f) \subseteq A \times B \quad \text { fun }(\operatorname{rel}(f))=\text { ? } \\ & \text { de } b \in f(a)\end{aligned}$

$$
\theta(A \times B)_{\text {rel }}^{\text {fun }}(A \Rightarrow P B)
$$

Bijectire
$\forall R . \quad \operatorname{rel}(\operatorname{pm} R)=R$
$\forall f . \quad f \operatorname{lin}($ relf $)=f$
Equirdently

$$
\begin{aligned}
& \text { relofin }=i d_{\theta(A \times B)} \\
& \text { furo rel }=i d(A \rightarrow P B)
\end{aligned}
$$

? Is the relational composition of two functions a

$$
\begin{aligned}
& \text { function? } f: A \rightarrow B \quad g: B \rightarrow C \\
& g \circ f \in \operatorname{Rel}(A C) \\
&(g \circ f)(a)= g(f(a)) \quad \forall a \in A
\end{aligned}
$$

$$
k^{0} \equiv 1 \sim \#(\phi \Rightarrow k)=1
$$

? Is the relational composition of two functions a function?

Notation $B^{A} \sim$ The set $(A \Rightarrow B)$
? What is the cardinality of the set of functions between two finite sets?
$\# A=n \quad \# B=m$

$$
\left.\begin{array}{c}
m \\
x m \\
x \\
x \\
x \\
m
\end{array}\right\} \stackrel{\Omega}{5}
$$

Bijective functions or bijections

$$
B_{i}[A, B) \subseteq(A \Rightarrow B)
$$

L def: $f: A \rightarrow B$ is a kjection iff
(1) $\exists g: B \rightarrow A$ such that $g \circ f=d_{A}$ and $f \circ g=1 d B$
(2) $\forall b \in B, \exists!a \in A, f(a)=b$.
(3) f is surjective and in jectire

Examples: ...
\longrightarrow Equaling-like

$R \subseteq A \times A$ is an equar. velotion relotions. whemerer
(1) Reflessintes $\forall a b A$ a Ra
(2) Symerin $\forall a, a^{\prime} \in A$. a $R a^{\prime} \Rightarrow a^{\prime} R a$
(3) Tromontin: $\forall a, a^{\prime}, a^{\prime \prime} \sigma A$ $a R a^{\prime} \wedge a^{\prime} R a^{\prime \prime} \Rightarrow a R a^{\prime \prime}$
\qquad The set of all partitious of A
Part (A)
A pertition P of A is a set of solbor 5 of A, that is $P \subseteq P(A)$, such That Lrefered to as blocles
(1) $\cup_{b \in P} b=A$
(2) $\forall b_{1}, b_{2} \in P \cdot b_{1} \neq b_{2} \Rightarrow b_{1} \cap b_{2} \subset \varnothing$

Todea

$$
P=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\} \not \subset \begin{aligned}
& b_{i} \sim_{j}=\phi \quad \forall_{i \phi j} \\
& U_{i} b_{i}=A
\end{aligned}
$$

 relotions of Le T be giren by

Need to check \bar{U}_{0} t $\pi(R)$ is a partition
(1) $U_{a \in A}[a]=A$

PROpERTY $\forall R G A ~ Q \in[a]$

$$
\text { (a) } \begin{aligned}
{[a] \cap[b] } & \notin \phi \\
x \in[a] \cap[b] & \Rightarrow x \in[a] \text { and } x \in[b] \\
& \Rightarrow x R a \text { and } a R b \\
& \Rightarrow Q R b \text { and } b R a
\end{aligned}
$$

$$
\varepsilon: \operatorname{Brt}(A) \rightarrow E \operatorname{Rgd}(A)
$$

for ll portition P of A defies.

$$
\overbrace{\text { er equr. ul. }}^{\varepsilon(P)=d f\{(x .)}
$$

(1) $\forall x .(x, x) \in E(p)$ which hrlds becouse herergeluat of A is in a black
(2) $(x, y) \in \varepsilon(\rho) \Longrightarrow(y, x) \in \varepsilon(p)$
(3) $(x, y) \in \varepsilon(p)$ and $(y, t) \in \varepsilon(p)$
$\rightarrow(x, r) \in E(p)$
$\exists b \cdot x^{\Downarrow} \in b$ ond $g e b$ " $\exists b^{\prime} . y \in b^{\prime}$ and $z \in b^{\prime}$

