Directed Graphs

A directed graph is specified by a set of nodes and directed edges between them.

They can be therefore formalised as a set N together with a relation $\mathrm{E} \subseteq \mathrm{N} \times \mathrm{N}$ on it.

For a directed graph $\mathrm{E} \subseteq \mathrm{N} \times \mathrm{N}$, what can we say about the directed graphs:
directed graphs: \quad, $\quad E, E \circ E \circ, \ldots$ nether E^{2}, E^{3},

$$
\downarrow E^{n} ?
$$

$x E^{2} y$ if oz. $X E z a z E y$
if The is a potto of length 2 in the divided graph from x to y.
$x E^{3} y$ if $J z . x E^{2} z \wedge z E y$
ill x n connected to y boy a path of leaper 3

By induction,
$x E^{n} y$ if There is a port of length n from x To y in the directed prophet E

$$
\begin{aligned}
& E^{+}=d y U_{n \in \mathbb{N}} E^{n} \\
& \left(x E^{7} y \text { if } \exists x \in \mathbb{N} \cdot x E^{n} y\right.
\end{aligned}
$$

if There exists a pots from x to y
Transitive closure of E.

$$
\begin{aligned}
& E^{(1)}=E \\
& E^{(n+1)}=E V\left(E \cdot E^{(n)}\right)
\end{aligned}
$$

If The directed graph has a finite set of wides say k the $E^{+}=E^{(k)}$

For a directed graph $\mathrm{E} \subseteq \mathrm{N} \times \mathrm{N}$, what can we say about the directed graphs:
? E $\circ \mathrm{E}, \mathrm{E} \circ \mathrm{E} \circ \mathrm{E}, \ldots$?

$$
\begin{aligned}
& E: N \rightarrow N \quad E^{-1}: N \rightarrow N \\
& x\left(E^{-1} \circ E\right) y \text { of } \exists z \cdot z E^{-1} y \wedge x E z \\
& \text { inf } \exists x \cdot y E^{\prime} z \wedge x E z
\end{aligned}
$$

$\operatorname{Sur}(A, B) \subseteq \operatorname{Tr}(A, B) \subseteq \operatorname{Pgn}(A, B) \subseteq \operatorname{Rel}(A, B)$
© Particle Functions
$B_{y}(A, B) \subseteq \operatorname{Iny}\left(A_{1} B\right)$

- Alpartial function is a relation in which every element of the domain is related to at most one element of the codomain; that is, ...
$f \in P(A \times B)$ is a partial function when
$\forall a \in A \cdot \forall b, b \prime \in B$

$$
\left(\begin{array}{l}
a f b \cap a f b^{\prime} \Rightarrow b=b^{\prime} \\
\text { Examples: } . . .
\end{array}\right.
$$

Examples: ...
Mputfortpart bechanour.
The mique $b \in B$ To which a $A A$ - related to, if al all, is denoted $f(a)$.

For a partial fuction f from A to B $f(a)$ could be modefined exoetty when a is not reloted to eny ting úB
o it dunsteo the migue elemert of O to which a is nelo ted by f.
$A_{1} B$ finte seto.

$$
\begin{aligned}
& \# P(A \times B)=2^{\#(A \times B)}=2^{\# A \cdot \# B} \\
& \#(A \Rightarrow B)=?
\end{aligned}
$$

 functions from A to B

$$
\#(A \Rightarrow\{*\})=\# O(A)
$$

$f: A \supset\{\boxplus\} \quad \sim \operatorname{dom}(f) \subseteq A$ Def: $\operatorname{dom}(f) \subseteq A$, the dounctin of definition of f, $11 \mathrm{del}\{a \in A \mid f(a)$ io defined?

A

$$
<\sim \sim\{43\}
$$

$$
\#(A \supset\{\cdots\})=\# \mathcal{P}(A)=2^{\# A}
$$

$\sum_{k}\binom{n}{k}$

$$
C_{k}^{n} C^{n}
$$

|| binonial Thanhen

$$
2^{n}(x+y)^{n}=\sum_{k}\left(\begin{array}{l}
n \\
k
\end{array} x^{k} y^{k-k}\right.
$$

? Is the relational composition of two partial functions a partial function?

$$
\begin{aligned}
& f: A \rightarrow B \quad g: B \rightarrow C \\
& {\left[\begin{array}{l}
g \circ f \in P(A \times C) \\
\text { Q Is it a portiol fuction? undel. }
\end{array}\right.} \\
& \text { [1] yes! } \\
& \begin{array}{c}
(g \circ f)(x)=\text { undef. } \\
\left\lvert\, \begin{array}{l}
\text { indel. } \\
g(f(x))
\end{array}\right.
\end{array} \\
& f x \notin \operatorname{don}(t) \\
& \text { of } t \in \operatorname{don} f(x) \\
& i f(x) \notin d y=n g) \\
& \text { of } f(x) \in \Delta x(g)
\end{aligned}
$$

(Todd) Functions

- A function is a partial function defined on every element of the domain; that is, .
Del A function f from A 充 $B($ notation $f: A \rightarrow B)$ to a partial function $f: A \supset B$ such that $\operatorname{don}(f)=A$

$$
\text { Examples: } \left\lvert\, \begin{aligned}
& \text { Every relation } R \text { from } A \text { to } B \\
& \text { induces a function from } A \text { to } P(B)
\end{aligned}\right.
$$

$\forall a \in A$.

$$
\operatorname{fan}(R)(a) \stackrel{d y}{=}\left\{b_{E B} \mid a R b\right\} \in P(B) \operatorname{fin}(R)
$$

Given $f: A \rightarrow P(B) \quad \operatorname{rel}(\underline{\operatorname{fin}}(R))=$?
$\} \operatorname{rel}(f) \subseteq A \times B \quad$ fun $(\operatorname{rel}(f))=$?
$\forall a \in A, b \in B,(a, b) \in \operatorname{rel}(f)$ ff dep $b \in f(a)$

