Notchom: $R \in \operatorname{Rel}(A, B), R: A \rightarrow B$

Relations

- A relation R from a set A to a set B is a subset of the product set $A \times B$; that is,

$$
R \subseteq A \times B
$$

or equivalently

$$
R \in \mathcal{P}(A \times B)
$$

NB: Relations come with a domain and a codomain.
Examples: ...

Exeuples: $(1) \varnothing: A \rightarrow B \quad$ eupty relotion (a, b) is wever in the empty relation
(2) $A \times B: A \nrightarrow B$ full relotion (a, b) is olways in the full selation.
(3) $S: N \not N \nrightarrow N$
n Sm iff $m=n^{2}$
(4) Compartation defines a velation
(5) Wetwoik define a relokon.
? Given a relation from A to B, is there a natural way in which to induce a relation from B to A ?

$$
\begin{aligned}
& \quad \begin{array}{l}
B \xrightarrow{R^{-1}} \\
\sum_{\text {du }} \\
b \in B, a \in A
\end{array} \\
& b R^{-1} a \text { 抽dy } a R b
\end{aligned}
$$

notation $R ; S$
Given $R \subseteq A \times B$ and $S \subseteq B \times C$ we wish to define $S \circ R \subseteq A \times C$.

Def

? What can we say about the two different ways in which one can define the composition of three relations?
? Does composition has a neutral element?
和 $R: A+2 B$:
$\left\llcorner I_{x}: x \rightarrow x \forall x\right.$

$$
R, I_{A}=R=I_{B} \circ R
$$

ζ
$x I_{x} y f_{d u} x=y$
Identity Relation

$$
\left(\tau_{0} S\right) \circ R=\tau_{0}\left(\delta_{0} R\right): A \leftrightarrow D
$$

Associativity composizion
show $\forall Q \in A, d \in D$.
$a\left[\left(T_{0} s\right) \cdot R\right] d$ iff $a\left[\tau_{0}(50 R)\right] d$
$a\left[\left(\cos _{0}\right) \circ R\right] d$ if $\exists_{b} \cdot a R b \wedge b\left(\tau_{0} S\right) d$

$$
\underline{k}=\{1,2, \ldots, k\}
$$

$R: m \longmapsto n$
$\sum_{m \rightarrow i n}$ notre form:

$$
(M \cdot L)_{i, j}=\sum_{k} L_{k, j} \times M_{i, k}
$$

L 2-dimersisual recton E grids.

$$
\begin{aligned}
& M \in \mathbb{R}^{m \times n} \\
& L \in \mathbb{R}^{n \times l}
\end{aligned}
$$

Given $R: \underline{m} \rightarrow \underline{n} \leadsto \operatorname{Mo}^{*} t(R) \in$ Bool $^{m \times n}$ $\operatorname{Red}(M): m \rightarrow n \quad R \sim \sim \operatorname{Bool}^{m \times n}$ $(i, j) \in \operatorname{Re} l(M)$

Tfodel $M_{i j}=$ dine
a byechre or
$\operatorname{Rel}\left(M_{\text {at }}(R)\right)=R$
1-1 corres poidena

$$
M_{2} t(\underline{\operatorname{Rel}}(M))=M
$$

inverse $2 \longrightarrow$ tronsposition

$$
\begin{aligned}
& \text { compsition } \rightleftarrows \text { multiplication } \\
& R: \underline{m} \rightarrow \underline{n}, L: \underline{n}+\underline{l} \\
& (L \circ R): m \rightarrow l \\
& (M \cdot L)_{i, j}=\sum_{R} L_{k j} \times M_{4 K} \\
& i(L \circ R) j \\
& M \in \mathbb{R}^{m \times n}, L \in \mathbb{R}^{n \times \ell} \\
& (L \cdot M) E \mathbb{R}^{m \times l} \\
& (k L j) \wedge(i R k) \\
& \text { if } V_{k \in \underline{n}}\left(R L_{j}\right) \wedge\left(i R_{R}\right) \\
& M \in B_{\text {ood }} \text { man }, L \text { \&boot } n=1 \\
& (L \cdot M) \in \text { Bool }^{m \times l} \\
& (C \cdot M)_{i, j}=V_{k} L_{k j} \wedge M_{i, k}
\end{aligned}
$$

Directed Graphs
A directed graph is specified by a set of nodes and directed edges between them.

is a relation from a set to itself
That is,

