Jonald charton Comprehension: $\{x \mid P(x)\}, \{x \in X \mid P(x)\}$ Zfor Xa set. connot be or bitrory 50 a to défine seto. (cf. MAGINSATION) Take $f(\alpha) = def(\chi \notin \chi)$ Suppose That Rizdel & x/2 & x is a set. JSRER? Suppose w. Then R&R 3 V JS RER? Suppose to Then it is not the case RER That is, RER of

Membership, inclusion, equality:

 $x \in X$, $X \subseteq Y$, X = Ya E { I P(x)] if F(a), XEY& YEX Frex. 26Y

Visast Powerset: The P(u) is a set $\mathcal{P}(\mathbf{U})$ Cardinality A Fill = def { S | S S U } • If nis put the P(n) is fut (#P(n)=2#" · Venn diagrams. • P(u) > 0 $\phi, \pi \in O(n)$

The Boolean algebra of sets $(\mathcal{P}(\mathbf{U}), \emptyset, \mathbf{U}, \cup, \cap, (\cdot)^{c})$ indition spectron $\chi^{c} = [z \in \mathcal{U} | z \notin \chi^{2}]$

The Boolean algebra of sets $(\mathcal{P}(\mathcal{U}), \emptyset, \mathcal{U}, \cup, \cap, (\cdot)^{c})$ **NB:** For all $X, Y \in \mathcal{P}(U)$, $X \cup Y = Y$ iff $X \subseteq Y$ iff $X \cap Y = X$ XAY=X

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

 $\left(\begin{array}{c}
 (AUB)UC = AU(BUC) \\
 (AUB)UC = AU(BUC) \\
 (AUB)UC = AU(BUC)
\end{array}
\right)$ Lo the expression A1 MAZ MA3 MAY is not embriquous

AUB=BUA ANB=BNA , AUA=A ANA=A

► The empty set \emptyset is a neutral element for \cup and the universal set U is a neutral element for \cap .

OUX = X

 $\mathcal{U} \cap X = X$

With respect to each other, the union operation ∪ and the intersection operation ∩ are absorptive and distributive.

 $\chi U(Y \cap Z) = (\chi \cup T) \cap (\chi \cup Z)$

 $X = X U (X \cap A)$

 $X = X \cap (X \cup A)$

► The complement operation (·)^c satisfies complementation laws.

 $\chi^{c} \cup \chi = \mathcal{U}$

 $\chi^{c} \cap \chi = \emptyset$

NB: For all $X, Y \in \mathcal{P}(U)$,

 $X^{c} = Y$ iff $(X \cup Y = U \text{ and } X \cap Y = \emptyset)$ (=) XUX^c=U and XNX^c=Ø by definition (<) If you show That Y has The property of complementation w.r.t. To X Then ectually Y in X.

A=5 TA Shith De Morgan's Laws $(X \cup Y)^{c} = X^{c} \cap Y^{c}$ Y = enough to showAUB=U. $A \cap B = \emptyset$. $(XUY)V(X^{C}NY^{C}) = \mathcal{U}$ $M = (X, V, Y) \cap (X^{c} \cap Y^{c}) = \emptyset$ WRG SP.

Sets and Logic

Chapter 3

Reading list:

- 3.1 Ordered pairs and products
- 3.2 Relations and functions
- 3.3 Relations as structure
 - 3.3.1 Directed graphs
 - 3.3.2 Equivalence relations
- 3.4 Size of sets

Suggested exercises: 3.1, 3.4, 3.5, 3.6, 3.10, 3.12, 3.17, 3.18, 3.21, 3.33, 3.36.

Product of Sets

Ordered pairs:

The ordered pairing of a and b is denoted (a, b).

NB: (a, b) = (x, y) iff a = x and b = y

Product of Sets

Ordered pairs:

The ordered pairing of a and b is denoted (a, b).

NB: (a, b) = (x, y) iff a = x and b = y

Product construction:

 $A \times B =_{def} \{ (a, b) \mid a \in A \text{ and } b \in B \}$

#(A×B)=#A.#B.

fimile case

? What is the cardinality of the product of two finite sets?

Examples: ...

