Discrete Mathematics II

12 lectures for Part IA CST 2012/13

Marcelo Fiore

Course web page:
http://www.cl.cam.ac.uk/teaching/1213/DiscMathll/

Motivations

- Circuits in hardware u Boolean algebra
- Datatype in programming languages n recurfare
- Formal languages in compilers m Regular dototyps
n Regular hagnogs.
- Relations in databases \sim The algebra of felon tons
- Graphs in algorithms n networks, Logo Tees...
- Counting in discrete probability $u \sim$ bijicitre
- Proof in program correctness corraporbaca.
- Type systems
- Computability

Discrete Mathematics I

- Propositional logic.
- Predicate logic.
- Proof.
- Set theory.
- Induction.

Chapter 1

Reading list:

1.1 Logical notation
1.2 Patterns of proof
1.3 Mathematical induction

- The principle of mathematical induction
- Definition by mathematical induction
- Tower of Hanoi

Suggested exercises: 1.5, 1.7.

Logical Notation
conguction

- $\mathrm{P} \wedge \mathrm{Q}, \mathrm{P} \& \mathrm{Q}, \mathrm{P}$ and Q disjunction
- $\mathrm{P} \vee \mathrm{Q}, \mathrm{P}$ or Q
- $\mathrm{P} \Rightarrow \mathrm{Q}, \mathrm{P}$ implies Q , if P then Q implication
- $\mathrm{P} \Leftrightarrow \mathrm{Q}, \mathrm{P}$ ff Q \qquad bimplication
- $\neg \mathrm{P}, \mathrm{P}$ does not hold

Tundroduel

- $\forall x . P(x)$, for all $x, P(x)$, $\forall x_{1}, \ldots, x_{n} . P\left(x_{1}, \ldots, x_{n}\right) ;$
umversol sacaton
quantifiers

- $\exists x . P(x)$, there exists x such that $P(x)$,
$\exists x_{1}, \ldots, x_{n} . P\left(x_{1}, \ldots, x_{n}\right)$
- $\exists!x . P(x)$, there exists a unique x such that $P(x)$
$\}$
unique

Defintions

$$
\begin{aligned}
& \mathbb{N} \text { - The set of noturd tubers } \\
& =\{1,2,3, \ldots\} \\
& N_{0} \text { - The set of natural tubers with zero } \\
& =\{0,1,2,3, \ldots\}
\end{aligned}
$$

Principle of Mathematical Induction

To show a property $\mathrm{P}(\mathrm{k})$ for all k ranging over the natural numbers, that is

$$
\text { to prove } \forall k \in \mathbb{N}_{0} . \mathrm{P}(\mathrm{k})
$$

by the principle of mathematical induction we proceed as follows:

1. We show the property for 0 ; that is
we prove $P(0)$
2. We show that if the property holds for an arbitrary number then it will also hold for its successor; that is

$$
\text { we prove } \forall n \in \mathbb{N}_{0} . P(n) \Rightarrow P(n+1)
$$

Example:

$$
\begin{aligned}
& \sum_{i=2}^{k} i=0+1+2+\cdots+k \\
& P(k)=\operatorname{def} \quad\left[\sum_{i=0}^{k} i=\frac{k(k+1)}{2}\right]
\end{aligned}
$$

Shows $\forall n \in \mathbb{N}_{0} . P(n)$
that is $\not \approx n \in N_{0}$. $\sum_{i=0}^{n} i=n(n+1) / 2$
By induction, we weed show BasE
(1) $P(0)=$ dy $\quad \sum_{i=0}^{0} i \stackrel{?}{=} O(0+1) / 2$ Both are O so the equality holdaiction
(2) $\forall n \in N . P(n) \Rightarrow P(n+1)$ STEP

Asume $P(n)$ uolds fin sout arbitraryn Show $P(M+1)$, thet is

$$
\begin{array}{rl}
\sum_{i=0}^{n+1} i & ? \\
i & (n+1)(n+1+1) / 2 \\
\sum_{i=0}^{n+1} i & =\left(\sum_{i=0}^{n} i\right)+(n+1) \\
& =n(n+1) / 2+(n+1) \text { by moductar } \\
& =(n+1)(n+2) / 2 \quad \text { hypas } h_{\text {as }}
\end{array}
$$

In portivalar

$$
\sum_{i=0}^{n+1} i=\sum_{i 20}^{n} i+(n+1)=(n+1)(n+2) / 2
$$

IS NOT A BROOFF.

Definition by Mathematical Induction

To define a function f ranging over the natural numbers; that is,

one may

- define the value $f(0)$ of the function f at 0 ; that is,

$$
\text { set } f(0)=b
$$

- define the value for $f(n+1)$ in terms of the values n and $f(n)$; that is

$$
\operatorname{set} f(n+1)=h(n, f(n))
$$

Example: Tower of Hanoi

$$
T(n)=_{\text {def }} \begin{cases}0 & \text { if } n=0 \\ 2 T(n-1)+1 & , \text { if } n \in \mathbb{N}\end{cases}
$$

a function from mes to mopers
Actually

$$
\tau(n)=2^{n}-1 \quad \forall n \in N_{0}
$$

Exercise Show it by induction

Chapter 2

Reading list:

2.1 Sets
2.2 Set laws

Suggested exercises: 2.2, 2.8

Sets

- Sets and classes are unordered collections.

Examples: $\mathbb{\emptyset}, \mathbb{N}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
The empty set ?

$$
\{\cdots,-2,-1,0,1,2, \ldots\}
$$

\mathbb{N} No $\mathbb{Z} \mathbb{R}$

- Comprehension:

[?] What propur hos shouldt be allowed fue Uhis G define a set?

