Let I be a nonempty subset of the natural numbers $\mathbb{N}=\{1,2,3, \cdots\}$.
The set S is defined to be least subset of \mathbb{N} such that

```
\(I \subseteq S\), and
if \(m, n \in S\) and \(m<n\), then \((n-m) \in S\).
```

Define h to be the least member of S. This question guides you through to a proof that h coincides with the highest common factor of I, written $h c f(I)$, and defined to be the natural number with the properties that
$h c f(I)$ divides n for every element $n \in I$, and if k is a natural number which divides n for every $n \in I$, then k divides $h c f(I)$.
(a) The set S may also be described as the least subset of \mathbb{N} closed under certain rules.

Describe the rules.

$$
\bar{i} \quad \text { i in } I \quad \frac{n, \quad m}{n-m} \quad m<n \text { in } \mathbb{N}
$$

Write down a principle of rule induction appropriate for the set S.

$$
\begin{aligned}
& \text { A property } P(x) \text { holds for all } x \in S \text { iff } \\
& \quad \forall i \text { in } I . P(i) \text { and } \\
& \quad \forall m<n \text { in } \mathbb{N} . P(n) \& P(m) \Rightarrow P(n-m)
\end{aligned}
$$

(b) Show by rule induction that $h c f(I)$ divides n for every $n \in S$.

Consider the property $P(x)$ given by hcf(I) divides x.
Base case: We need show that hcf(I) divides i for all i in I; which holds by definition of hcf(I).

Inductive step: Let $m<n$ in \mathbb{N} be such that hcf(I) divides n and m. We need show that hcf(I) divides $n-m$.
By assumption, $n=l \cdot h c f(I)$ for some $l \in \mathbb{N}$ and $m=k \cdot h c f(I)$ for some $k \in \mathbb{N}$. Hence, $n-m=(l-k) \cdot h c f(I)$ for $(l-k) \in \mathbb{N}$, as $n>m$, and we are done.
(c) Let $n \in S$. Establish that

$$
\text { if } p \cdot h<n \text { then }(n-p \cdot h) \in S
$$

for all nonnegative integers p.
The idea is that since n and h are in S then so will be $n-h$ whenever $n>h$, in which case so will be $(n-h)-h=n-2 \cdot h$ whenever $n>2 \cdot h$, etc. Formalise this as an inductive argument on $p \in \mathbb{N}_{0}$.
(d) Show that h divides n for every $n \in S$. [Hint: suppose otherwise and derive a contradiction.]

Suppose that there is an $n \in S$ such that h does not divide it. Since $h<n$, $n=p \cdot h+r$ for $p \in \mathbb{N}_{0}$ and $0<r<h$. Then, by the previous item, $r=n-p \cdot h$ is an element of S that happens to be smaller than h. A contradiction!
(e) Why do the results of (b) and (d) imply that $h=h c f(I)$?

Please finish it off.

