For any two sets X and Y, with Y containing at least two elements, there cannot be an injection from the set of functions $(X \rightarrow Y)$ to the set X.
(i) For every set X, there is no injection $\mathcal{P}(X) \rightarrow X$.
Proof. Aiming at a contradiction, let $f: \mathcal{P}(X) \rightarrow X$ be an injective function (that is, such that $f(A)=f(B)$ implies $A=B$ for all $A, B \in \mathcal{P}(X)$).

Then, for

$$
W={ }_{\operatorname{def}}\{x \in X \mid \exists Z \in \mathcal{P}(X) . x=f(Z) \text { and } f(Z) \notin Z\} \in \mathcal{P}(X)
$$

we have the following contradiction

$$
\begin{aligned}
& f(W) \in W \\
& \quad \Longleftrightarrow \exists Z \in \mathcal{P}(X) \cdot f(W)=f(Z) \text { and } f(Z) \notin Z \\
& \quad \Longleftrightarrow f(W) \notin W
\end{aligned}
$$

where the first equivalence follows from the definition of W and the second one from the injectivity of f.
(ii) If a set Y has at least two distinct elements then there is an injection $\mathcal{P}(X) \rightarrow(X \rightarrow Y)$. Proof. For y_{0} and y_{1} two distinct elements of Y, define first the function

$$
t:(X \rightarrow\{\mathrm{~T}, \mathrm{~F}\}) \rightarrow(X \rightarrow Y)
$$

given by

$$
t={ }_{\operatorname{def}} \lambda f \in(X \rightarrow\{\mathrm{~T}, \mathrm{~F}\}) \cdot \lambda x \in X . \text { if } f(x) \text { then } y_{1} \text { else } y_{0}
$$

and check that it is injective (for which you will need to use that $y_{0} \neq y_{1}$).
Consider then the composite function

$$
t \circ \chi: \mathcal{P}(X) \rightarrow(X \rightarrow Y)
$$

for $\chi: \mathcal{P}(X) \rightarrow(X \rightarrow\{\mathrm{~T}, \mathrm{~F}\})$ the bijection of Exercise 4.8.
(iii) There is no injection from $(X \rightarrow Y)$ to X when Y has at least two distinct elements.

Proof. If there were an injective function $f:(X \rightarrow Y) \rightarrow X$ then the composite function $f \circ t \circ \chi: \mathcal{P}(X) \rightarrow X$ would be injective, contradicting (i).

