	Introduction rules	Elimination rules
^	$l. P \text{ from}$ $m. Q \text{ from}$ $n. P \land Q \text{ from } l \text{ and } m \text{ by } \land \text{-introduction}$ (it doesn't matter in what order l and m are in)	$m. P \wedge Q \text{ from}$ $n. P \text{ from } m \text{ by } \land \text{-elimination}$ or $ \\ m. P \wedge Q \text{ from}$ $ \\ n. Q \text{ from } m \text{ by } \land \text{-elimination}$
V	$m.$ P from $n.$ $P \lor Q$ from m by \lor -introduction or $m.$ Q from $n.$ $P \lor Q$ from m by \lor -introduction	$l.\ P\lor Q\ \text{from }\dots\text{by }\dots$ $\vdots \\ m_1.\ \text{Assume }P$ $\dots \\ m_2.\ R$ $\vdots \\ m_1.\ \text{Assume }Q$ $\dots \\ n_2.\ R$ $\dots \\ n_2.\ R$ $\dots \\ o.\ R\ \text{from }l,\ m_1-m_2,\ n_1-n_2\ \text{by }\vee\text{-elimination}$ [it doesn't matter what order $l,\ m_1-m_2,\ \text{and }n_1-n_2\ \text{are in)}$
⇒		$l.\ P\Rightarrow Q\ {\rm by}\$ $ \\ m.\ P\ {\rm by}\$ $ \\ n.\ Q\ {\rm from}\ l\ {\rm and}\ m\ {\rm by}\Rightarrow {\rm -elimination}$
٦	$\begin{matrix} \dots \\ m. \text{ Assume } P \\ \dots \\ n. F \text{ from } \dots \text{ by } \dots \\ n+1. \ \neg P \text{ from } m-n, \text{ by } \neg\text{-introduction} \end{matrix}$	$l.\ P\ {\rm by}\$ $ \\ m.\ \neg P\ {\rm by}\$ $ \\ n.\ F\ {\rm from}\ l\ {\rm and}\ m\ {\rm by}\ \neg {\rm -elimination}$
T	 n. T	No elimination rule for True.
F	No introduction rule for False.	$m.\ F \ \text{from} \ \text{by}$ $ \\ n.\ P \ \text{from } m, \ \text{by } F\text{-elimination}$
¥	$m. \ {\it Consider an arbitrary} \ x \ ({\it from domain} \)$ $n. \ P(x) \ {\it by} \$ $n+1. \ \forall \ x.P(x) \ {\it from} \ m-n \ {\it by} \ \forall {\it -introduction}$	$m. orall \ x.P(x) \ ext{from}$ $n. P(v) \ ext{from } m \ ext{by } orall ext{\forall-elimination}$
3	$m.\ P(v)$ $n.\ \exists\ x.P(x)\ \text{from}\ m\ \text{by}\ \exists\text{-introduction}\ \text{with witness}\ x=v$	$l. \; \exists \; x.P(x)$ $m. \; \text{For some actual } x_1, P(x_1)$ $n. \; Q \; \text{(where } x_1 \; \text{not free in } \; Q)$ $o. \; Q \; \text{from } l, m\!-\!n \text{, by } \; \exists \text{-elimination}$
	$ \begin{array}{c} m. \text{ Assume } \neg P \\ \\ n. \ F \text{ from by} \\ n+1. \ P \text{ from } m-n, \text{ by contradiction} \end{array} $	n)