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“One of the most helpful concepts in the whole of programming is the notion of

type, used to classify the kinds of object which are manipulated. A significant

proportion of programming mistakes are detected by an implementation which

does type-checking before it runs any program. Types provide a taxonomy

which helps people to think and to communicate about programs.”

R. Milner, “Computing Tomorrow” (CUP, 1996), p264
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The full title of this course is

Type Systems for Programming Languages

What are ‘type systems’ and what are they good for?

‘A type system is a tractable syntactic method for proving the absence

of certain program behaviours by classifying phrases according to the

kinds of values they compute’

B. Pierce, ‘Types and Programming Languages’ (MIT, 2002), p1

Type systems are one of the most important channels by which

developments in theoretical computer science get applied in

programming language design and software verifiction.
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Uses of type systems

• Detecting errors via type-checking, either statically (decidable errors

detected before programs are executed) or dynamically (typing errors

detected during program execution).

• Abstraction and support for structuring large systems.

• Documentation.

• Efficiency.

• Whole-language safety.
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Safety

Informal definitions from the literature.

‘A safe language is one that protects its own high-level abstractions [no

matter what legal program we write in it]’.

‘A safe language is completely defined by its programmer’s manual

[rather than which compiler we are using]’.

‘A safe language may have trapped errors [one that can be handled

gracefully], but can’t have untrapped errors [ones that cause

unpredictable crashes]’.

3



Formal type systems

• Constitute the precise, mathematical characterisation of informal type

systems (such as occur in the manuals of most typed languages.)

• Basis for type soundness theorems: ‘any well-typed program cannot

produce run-time errors (of some specified kind)’.

• Can decouple specification of typing aspects of a language from

algorithmic concerns: the formal type system can define typing

independently of particular implementations of type-checking

algorithms.
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Typical type system ‘judgement’

is a relation between typing environments (Γ), program phrases (M )

and type expressions (τ ) that we write as

Γ ⊢M : τ

and read as ‘given the assignment of types to free identifiers of M
specified by type environment Γ, then M has type τ ’.

E.g.

f : int list → int , b : bool ⊢ (if b then f nil else 3) : int

is a valid typing judgement about ML.
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Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar

Haskell-style:

foo :: bar

C/Java-style:

bar foo
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Type checking, typeability, and type inference

Suppose given a type system for a programming language with

judgements of the form Γ ⊢M : τ .

Type-checking problem: given Γ, M , and τ , is Γ ⊢M : τ derivable

in the type system?

Typeability problem: given Γ and M , is there any τ for which

Γ ⊢M : τ is derivable in the type system?

Second problem is usually harder than the first. Solving it usually

involves devising a type inference algorithm computing a τ for each Γ
and M (or failing, if there is none).
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Polymorphism = ‘has many types’

Overloading (or ‘ad hoc’ polymorphism): same symbol denotes

operations with unrelated implementations. (E.g. + might mean both

integer addition and string concatenation.)

Subsumption τ1 <: τ2: any M1 : τ1 can be used as M1 : τ2

without violating safety.

Parametric polymorphism (‘generics’): same expression belongs to a
family of structurally related types. (E.g. in SML, length function

fun length nil = 0

| length (x :: xs) = 1 + (length xs)

has type τ list → int for all types τ .)

8



Type variables and type schemes in Mini-ML

To formalise statements like

‘ length has type τ list → int , for all types τ ’

it is natural to introduce type variables α (i.e. variables for which types

may be substituted) and write

length : ∀α (α list → int).

∀α (α list → int) is an example of a type scheme.
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Polymorphism of let-bound variables in ML

For example in

let f = λx(x) in (f true) :: (f nil)

λx(x) has type τ → τ for any type τ , and the variable f to which it is

bound is used polymorphically:

- in (f true), f has type bool → bool

- in (f nil), f has type bool list → bool list

Overall, the expression has type bool list .
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‘Ad hoc’ polymorphism:

if f : bool → bool

and f : bool list → bool list ,

then (f true) :: (f nil) : bool list .

‘Parametric’ polymorphism:

if f : ∀α (α→ α),

then (f true) :: (f nil) : bool list .
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Mini-ML types and type schemes

Types
τ ::= α type variable

| bool type of booleans

| τ → τ function type

| τ list list type

where α ranges over a fixed, countably infinite set TyVar.

Type Schemes
σ ::= ∀A (τ)

where A ranges over finite subsets of the set TyVar.

When A = {α1, . . . , αn}, we write ∀A (τ) as

∀α1, . . . , αn (τ).
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The ‘generalises’ relation between type schemes and types

We say a type scheme σ = ∀α1, . . . , αn (τ ′) generalises a type

τ , and write σ ≻ τ if τ can be obtained from the type τ ′ by

simultaneously substituting some types τi for the type variables αi

(i = 1, . . . , n):

τ = τ ′[τ1/α1, . . . , τn/αn].

(N.B. The relation is unaffected by the particular choice of names of bound type

variables in σ.)

The converse relation is called specialisation: a type τ is a specialisation

of a type scheme σ if σ ≻ τ .
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Mini-ML typing judgement

takes the form Γ ⊢M : τ where

• the typing environment Γ is a finite function from variables to type

schemes.

(We write Γ = {x1 : σ1, . . . , xn : σn} to indicate that Γ has

domain of definition dom(Γ) = {x1, . . . , xn} and maps each

xi to the type scheme σi for i = 1..n.)

• M is an Mini-ML expression

• τ is an Mini-ML type.
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Mini-ML expressions, M

::= x variable

| true boolean values

| false

| ifM thenM elseM conditional

| λx(M) function abstraction

| M M function application

| letx = M inM local declaration

| nil nil list

| M :: M list cons

| caseM of nil=> M |x :: x => M case expression
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Mini-ML type system, I

Γ ⊢ x : τ if (x : σ) ∈ Γ and σ ≻ τ(var ≻)

Γ ⊢ B : bool if B ∈ {true, false}(bool)

Γ ⊢M1 : bool Γ ⊢M2 : τ Γ ⊢M3 : τ

Γ ⊢ ifM1 thenM2 elseM3 : τ
(if )
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Mini-ML type system, II

Γ ⊢ nil : τ list(nil)

Γ ⊢M1 : τ Γ ⊢M2 : τ list

Γ ⊢M1 :: M2 : τ list
(cons)

Γ ⊢M1 : τ1 list Γ ⊢M2 : τ2

Γ, x1 : τ1, x2 : τ1 list ⊢M3 : τ2

Γ ⊢ caseM1 of nil=> M2

|x1 :: x2 => M3 : τ2

if x1, x2 /∈
dom(Γ)

and x1 6= x2

(case)
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Mini-ML type system, III

Γ, x : τ1 ⊢M : τ2

Γ ⊢ λx(M) : τ1→ τ2

if x /∈ dom(Γ)(fn)

Γ ⊢M1 : τ1→ τ2 Γ ⊢M2 : τ1

Γ ⊢M1 M2 : τ2

(app)
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Mini-ML type system, IV

Γ ⊢M1 : τ

Γ, x : ∀A (τ) ⊢M2 : τ ′

Γ ⊢ letx = M1 inM2 : τ ′
if x /∈ dom(Γ) and

A = ftv(τ)− ftv(Γ)

(let)
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Assigning type schemes to Mini-ML expressions

Given a type scheme σ = ∀A (τ), write

Γ ⊢M : σ

if A = ftv(τ)− ftv(Γ) and Γ ⊢M : τ is derivable from the

axiom and rules on Slides 16–19.

When Γ = { } we just write ⊢M : σ for { } ⊢M : σ and say

that the (necessarily closed—see Exercise 2.5.2) expression M is

typeable in Mini-ML with type scheme σ.
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Two examples involving self-application

M
def
= let f = λx1(λx2(x1)) in f f

M ′ def
= (λf(f f)) λx1(λx2(x1))

Are M and M ′ typeable in the Mini-ML type system?
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Constraints generated while inferring a type for

let f = λx1(λx2(x1)) in f f

A = ftv(τ2)(C0)

τ2 = τ3→ τ4(C1)

τ4 = τ5→ τ6(C2)

∀ { } (τ3) ≻ τ6, i.e. τ3 = τ6(C3)

τ7 = τ8→ τ1(C4)

∀A (τ2) ≻ τ7(C5)

∀A (τ2) ≻ τ8(C6)
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Principal type schemes for closed expressions

A closed type scheme ∀A (τ) is the principal type scheme of a closed

Mini-ML expression M if

(a) ⊢M : ∀A (τ)

(b) for any other closed type scheme ∀A′ (τ ′),

if ⊢M : ∀A′ (τ ′), then ∀A (τ) ≻ τ ′
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Theorem (Hindley; Damas-Milner)

If the closed Mini-ML expression M is typeable (i.e. ⊢M : σ holds for

some type scheme σ), then there is a principal type scheme for M .

Indeed, there is an algorithm which, given any M as input, decides

whether or not it is typeable and returns a principal type scheme if it is.
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An ML expression with a principal type scheme

hundreds of pages long

let pair = λx(λy(λz(z x y))) in

letx1 = λy(pair y y) in

letx2 = λy(x1(x1 y)) in

letx3 = λy(x2(x2 y)) in

letx4 = λy(x3(x3 y)) in

letx5 = λy(x4(x4 y)) in

x5(λy(y))

(Taken from Mairson 1990.)
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Unification of ML types

There is an algorithm mgu which when input two Mini-ML types τ1 and

τ2 decides whether τ1 and τ2 are unifiable, i.e. whether there exists a

type-substitution S ∈ Sub with

(a) S(τ1) = S(τ2).

Moreover, if they are unifiable, mgu(τ1, τ2) returns the most general

unifier—an S satisfying both (a) and

(b) for all S′ ∈ Sub, if S′(τ1) = S′(τ2), then S′ = TS for some

T ∈ Sub.

By convention mgu(τ1, τ2) = FAIL if (and only if) τ1 and τ2 are not

unifiable.
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Principal type schemes for open expressions

A solution for the typing problem Γ ⊢M : ? is a pair (S, σ)

consisting of a type substitution S and a type scheme σ satisfying

S Γ ⊢M : σ

(where S Γ = {x1 : S σ1, . . . , xn : S σn}, if

Γ = {x1 : σ1, . . . , xn : σn}).

Such a solution is principal if given any other, (S′, σ′), there is some

T ∈ Sub with TS = S′ and T (σ) ≻ σ′.

[For type schemes σ and σ′, with σ′ = ∀A′ (τ ′) say, we define

σ ≻ σ′ to mean A′ ∩ ftv(σ) = {} and σ ≻ τ ′.]
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Properties of the Mini-ML typing relation

• If Γ ⊢M : σ, then for any type substitution S ∈ Sub
SΓ ⊢M : Sσ.

• If Γ ⊢M : σ and σ ≻ σ′, then Γ ⊢M : σ′.
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Specification for the principal typing algorithm, pt

pt operates on typing problems Γ ⊢M : ? (consisting of a typing

environment Γ and a Mini-ML expression M ). It returns either a pair

(S, τ) consisting of a type substitution S ∈ Sub and a Mini-ML type

τ , or the exception FAIL.

• If Γ ⊢M : ? has a solution (cf. Slide 27), then pt(Γ ⊢M : ?)
returns (S, τ) for some S and τ ;

moreover, setting A = (ftv(τ)− ftv(S Γ)), then

(S,∀A (τ)) is a principal solution for the problem Γ ⊢M : ?.

• If Γ ⊢M : ? has no solution, then pt(Γ ⊢M : ?) returns

FAIL.
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Some of the clauses in a definition of pt

Function abstractions: pt(Γ ⊢ λx(M) : ?)
def
=

let α = fresh in

let (S, τ) = pt(Γ, x : α ⊢M : ?) in (S, S(α)→ τ)

Function applications: pt(Γ ⊢M1 M2 : ?)
def
=

let (S1, τ1) = pt(Γ ⊢M1 : ?) in

let (S2, τ2) = pt(S1 Γ ⊢M2 : ?) in

let α = fresh in

let S3 = mgu(S2 τ1, τ2→ α) in (S3S2S1, S3(α))
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ML types and expressions for mutable references

τ ::= . . .

| unit unit type

| τ ref reference type.

M ::= . . .

| () unit value

| refM reference creation

| !M dereference

| M := M assignment
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Midi-ML’s extra typing rules

Γ ⊢ () : unit(unit)

Γ ⊢M : τ

Γ ⊢ refM : τ ref
(ref )

Γ ⊢M : τ ref

Γ ⊢ !M : τ
(get)

Γ ⊢M1 : τ ref Γ ⊢M2 : τ

Γ ⊢M1 := M2 : unit
(set)
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Example 3.1.1

The expression

let r = ref λx(x) in

letu = (r := λx′(ref !x′)) in

(!r)()

has type unit .
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Midi-ML transitions involving references

〈!x, s〉 → 〈s(x), s〉 if x ∈ dom(s)

〈!V, s〉 → FAIL if V not a variable

〈x := V ′, s〉 → 〈(), s[x 7→ V ′]〉

〈V := V ′, s〉 → FAIL if V not a variable

〈refV, s〉 → 〈x, s[x 7→ V ]〉 if x /∈ dom(s)

where V ranges over values:

V ::= x | λx(M) | () | true | false | nil | V :: V
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Value-restricted typing rule for let-expressions

Γ ⊢M1 : τ1

Γ, x : ∀A (τ1) ⊢M2 : τ2

Γ ⊢ letx = M1 inM2 : τ2

(†)(letv)

(†) provided x /∈ dom(Γ) and

A =

{

{ } if M1 is not a value

ftv(τ1)− ftv(Γ) if M1 is a value

(Recall that values are given by

V ::= x | λx(M) | () | true | false | nil | V :: V .)
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Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M , if there is some type scheme σ
for which

⊢M : σ

is provable in the value-restricted type system (axioms and rules on

Slides 16–18, 32 and 35), then evaluation of M does not fail, i.e. there is

no sequence of transitions of the form

〈M, { }〉 → · · · → FAIL

for the transition system→ defined in Figure 4

(where { } denotes the empty state).
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λ-bound variables in ML cannot be used

polymorphically within a function abstraction

E.g. λf((f true) :: (f nil)) and λf(f f) are not typeable in the ML

type system.

Syntactically , because in rule

(fn)
Γ, x : τ1 ⊢M : τ2

Γ ⊢ λx(M) : τ1→ τ2

the abstracted variable has to be assigned a trivial type scheme (recall

x : τ1 stands for x : ∀ { } (τ1)).

Semantically , because ∀A (τ1)→ τ2 is not semantically equivalent

to an ML type when A 6= { }.
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Monomorphic types . . .

τ ::= α | bool | τ → τ | τ list

. . . and type schemes

σ ::= τ | ∀α (σ)

Polymorphic types

π ::= α | bool | π→ π | π list | ∀α (π)

E.g. α→ α′ is a type, ∀α (α→ α′) is a type scheme and a polymorphic

type (but not a monomorphic type), ∀α (α)→ α′ is a polymorphic type, but

not a type scheme.
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Identity, Generalisation and Specialisation

Γ ⊢ x : π if (x : π) ∈ Γ(id)

Γ ⊢M : π

Γ ⊢M : ∀α (π)
if α /∈ ftv(Γ)(gen)

Γ ⊢M : ∀α (π)

Γ ⊢M : π[π′/α]
(spec)
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Fact (see Wells 1994):

For the modified ML type system with polymorphic types and (var ≻)

replaced by the axiom and rules on Slide 39, the type checking and

typeability problems (cf. Slide 7) are equivalent and undecidable.
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Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program phrases and

typings have to be inferred (ideally, entirely at compile-time). (E.g.

Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the syntax.
(E.g. Java.)

E.g. self application function of type ∀α (α)→∀α (α)
(cf. Example 4.1.1)

Implicitly typed version: λ f (f f)

Explicitly type version: λ f : ∀α1 (α1) (Λ α2 (f(α2→ α2)(f α2)))

41



PLC syntax

Types τ ::= α type variable

| τ → τ function type

| ∀α (τ) ∀-type

Expressions

M ::= x variable

| λ x : τ (M) function abstraction

| M M function application

| Λ α (M) type generalisation

| M τ type specialisation

(α and x range over fixed, countably infinite sets TyVar and Var

respectively.)
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Functions on types

In PLC, Λ α (M) is an anonymous notation for the function F

mapping each type τ to the value of M [τ/α] (of some particular type).

F τ denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on types

(Λ α (M)) τ →M [τ/α]

as well as the usual form of beta-reduction from λ-calculus

(λ x : τ (M1)) M2 →M1[M2/x]
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PLC typing judgement

takes the form Γ ⊢M : τ where

• the typing environment Γ is a finite function from variables to PLC

types.

(We write Γ = {x1 : τ1, . . . , xn : τn} to indicate that Γ has

domain of definition dom(Γ) = {x1, . . . , xn} and maps each

xi to the PLC type τi for i = 1..n.)

• M is a PLC expression

• τ is a PLC type.

44



PLC type system

Γ ⊢ x : τ if (x : τ) ∈ Γ(var)

Γ, x : τ1 ⊢M : τ2

Γ ⊢ λ x : τ1 (M) : τ1→ τ2

if x /∈ dom(Γ)(fn)

Γ ⊢M1 : τ1→ τ2 Γ ⊢M2 : τ1

Γ ⊢M1 M2 : τ2

(app)

Γ ⊢M : τ

Γ ⊢ Λ α (M) : ∀α (τ)
if α /∈ ftv(Γ)(gen)

Γ ⊢M : ∀α (τ1)

Γ ⊢M τ2 : τ1[τ2/α]
(spec)
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An incorrect ‘proof’

x1 : α, x2 : α ⊢ x2 : α
(var)

x1 : α ⊢ λ x2 : α (x2) : α→ α
(fn)

x1 : α ⊢ Λ α (λ x2 : α (x2)) : ∀α (α→ α)
(wrong!)
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Decidability of the PLC typeability

and type-checking problems

Theorem.

For each PLC typing problem, Γ ⊢M : ?, there is at most one PLC

type τ for which Γ ⊢M : τ is provable. Moreover there is an

algorithm, typ , which when given any Γ ⊢M : ? as input, returns

such a τ if it exists and FAILs otherwise.

Corollary.

The PLC type checking problem is decidable: we can decide whether or

not Γ ⊢M : τ is provable by checking whether

typ(Γ ⊢M : ?) = τ .

(N.B. equality of PLC types up to alpha-conversion is decidable.)

47



PLC type-checking algorithm, I

Variables:

typ(Γ, x : τ ⊢ x : ?)
def
= τ

Function abstractions:

typ(Γ ⊢ λ x : τ1 (M) : ?)
def
=

let τ2 = typ(Γ, x : τ1 ⊢M : ?) in τ1→ τ2

Function applications:

typ(Γ ⊢M1 M2 : ?)
def
=

let τ1 = typ(Γ ⊢M1 : ?) in

let τ2 = typ(Γ ⊢M2 : ?) in

case τ1 of τ → τ ′ 7→ if τ = τ2 then τ ′ else FAIL

| 7→ FAIL
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PLC type-checking algorithm, II

Type generalisations:

typ(Γ ⊢ Λ α (M) : ?)
def
=

let τ = typ(Γ ⊢M : ?) in ∀α (τ)

Type specialisations:

typ(Γ ⊢M τ2 : ?)
def
=

let τ = typ(Γ ⊢M : ?) in

case τ of ∀α (τ1) 7→ τ1[τ2/α]

| 7→ FAIL
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Beta-reduction of PLC expressions

M beta-reduces to M ′ in one step, M →M ′ , means

M ′ can be obtained from M (up to alpha-conversion, of course) by

replacing a subexpression which is a redex by its corresponding reduct.

The redex-reduct pairs are of two forms:

(λ x : τ (M1)) M2 →M1[M2/x]

(Λ α (M)) τ →M [τ/α].

M →∗ M ′ indicates a chain of finitely† many beta-reductions.

(† possibly zero—which just means M and M ′ are alpha-convertible).

M is in beta-normal form if it contains no redexes.
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Properties of PLC beta-reduction on typeable expressions

Suppose Γ ⊢M : τ is provable in the PLC type system. Then the

following properties hold:

Subject Reduction. If M →M ′, then Γ ⊢M ′ : τ is also a

provable typing.

Church Rosser Property. If M →∗ M1 and M →∗ M2, then

there is M ′ with M1 →∗ M ′ and M2 →∗ M ′.

Strong Normalisation Property. There is no infinite chain

M →M1 →M2 → . . . of beta-reductions starting from M .
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PLC beta-conversion, =β

By definition, M =β M ′ holds if there is a finite chain

M − · − · · · − · −M ′

where each− is either→ or←, i.e. a beta-reduction in one direction or

the other. (A chain of length zero is allowed—in which case M and M ′

are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for typeable

PLC expressions, M =β M ′ holds if and only if there is some

beta-normal form N with

M →∗ N ∗←M ′
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Polymorphic booleans

bool
def
= ∀α (α→ (α→ α))

True
def
= Λ α (λ x1 : α, x2 : α (x1))

False
def
= Λ α (λ x1 : α, x2 : α (x2))

if
def
= Λ α (λ b : bool , x1 : α, x2 : α (b α x1 x2))

53



Polymorphic lists

α list
def
= ∀α′ (α′→ (α→ α′→ α′)→ α′)

Nil
def
= Λ α, α′ (λ x′ : α′, f : α→ α′→ α′ (x′))

Cons
def
= Λα(λx : α, ℓ : α list(Λα′(

λx′ : α′, f : α→ α′→ α′(

f x (ℓ α′ x′ f)))))
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Iteratively defined functions on finite lists

A∗ def
= finite lists of elements of the set A

Given a set A′, an element x′ ∈ A′, and a function

f : A→A′→A′, the iteratively defined function listIter x′ f is

the unique function g : A∗→A′ satisfying:

g Nil = x′

g (x :: ℓ) = f x (g ℓ).

for all x ∈ A and ℓ ∈ A∗.
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List iteration in PLC

iter
def
= Λα, α′(λx′ : α′, f : α→ α′→ α′(

λ ℓ : α list (ℓ α′ x′ f)))

satisfies:

• ⊢ iter : ∀α, α′ (α′→ (α→ α′→ α′)→ α list → α′)

• iter α α′ x′ f (Nil α) =β x′

• iter α α′ x′ f (Cons α x ℓ) =β f x (iter α α′ x′ f ℓ)
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A tautology checker

fun taut n f = ifn = 0 then f else

(taut(n− 1)(f true))

andalso (taut(n− 1)(f false))

Defining types

{

0AryBoolOp
def
= bool

(n + 1)AryBoolOp
def
= bool → (n AryBoolOp)

then taut n has type (n AryBoolOp)→ bool , i.e. the result type

of the function taut depends upon the value of its argument.
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The tautology checker in Agda

data Bool : Set where

True : Bool

False : Bool

_and_ : Bool -> Bool -> Bool

True and True = True

True and False = False

False and _ = False

data Nat : Set where

Zero : Nat

Succ : Nat -> Nat

_AryBoolOp : Nat -> Set

Zero AryBoolOp = Bool

(Succ n) AryBoolOp = Bool -> n AryBoolOp

taut : (n : Nat) -> n AryBoolOp -> Bool

taut Zero f = f

taut (Succ n) f = taut n (f True) and taut n (f False)
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Dependent function types (x : τ)→ τ ′

Γ, x : τ ⊢M : τ ′

Γ ⊢ λ x : τ (M) : (x : τ)→ τ ′
if x /∈ dom(Γ) ∪ fv(Γ)

Γ ⊢M : (x : τ)→ τ ′ Γ ⊢M ′ : τ

Γ ⊢M M ′ : τ ′[M ′/x]

τ ′ may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in τ ′ are bound in (x : τ)→ τ ′.)
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Curry-Howard correspondence

Logic ↔ Type system

propositions, φ ↔ types, τ

(constructive) proofs, p ↔ expressions, M

‘p is a proof of φ’ ↔ ‘M is an expression of type τ ’

simplification of proofs ↔ reduction of expressions
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Second-order intuitionistic propositional calculus (2IP C)

2IPC propositions: φ ::= p | φ→ φ | ∀ p (φ) , where p ranges

over an infinite set of propositional variables.

2IPC sequents: Φ ⊢ φ , where Φ is a finite set of 2IPC propositions

and φ is a 2IPC proposition.

Φ ⊢ φ is provable if it is in the set of sequents inductively generated by:

(Id) Φ ⊢ φ if φ ∈ Φ

(→I)
Φ, φ ⊢ φ′

Φ ⊢ φ→ φ′
(→E)

Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
if p /∈ fv(Φ) (∀E)

Φ ⊢ ∀ p (φ)

Φ ⊢ φ[φ′/p]
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A 2IPC proof

{p & q, p, q} ⊢ p
(Id)

{p & q, p} ⊢ q→ p
(→I)

{p & q} ⊢ p→ q→ p
(→I)

{p & q} ⊢ ∀ r ((p→ q→ r)→ r)
(Id)

{p & q} ⊢ (p→ q→ p)→ p
(∀E)

{p & q} ⊢ p
(→E)

{ } ⊢ p & q→ p
(→I)

{ } ⊢ ∀ q (p & q→ p)
(∀I)

{ } ⊢ ∀ p, q (p & q→ p)
(∀I)

where p & q is an abbreviation for ∀ r ((p→ q→ r)→ r).

The PLC expression corresponding to this proof is:

Λ p, q (λ z : p & q (z p (λ x : p, y : q (x)))).
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Type-inference versus proof search

Type-inference: ‘given Γ and M , is there a type σ such that

Γ ⊢M : σ?’

(For PLC/2IPC this is decidable.)

Proof-search: ‘given Γ and σ, is there a proof term M such that

Γ ⊢M : σ?’

(For PLC/2IPC this is undecidable.)
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2IPC is a constructive logic

For example, there is no proof of the Law of Excluded Middle

∀ p (p ∨ ¬p)

Using the definitions on Slide 65, this is an abbreviation for

∀ p, q ((p→ q)→ ((p→∀ r (r))→ q)→ q)

(The fact that there is no closed PLC term of type ∀ p (p∨¬p) can be proved

using the technique developed in the Tripos question 13 on paper 9 in 2000.)
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Logical operations definable in 2IPC

• Truth: true
def
= ∀ p (p→ p).

• Falsity: false
def
= ∀ p (p).

• Conjunction: φ & φ′ def
= ∀ p ((φ→ φ′→ p)→ p)

(where p /∈ fv(φ, φ′)).

• Disjunction: φ ∨ φ′ def
= ∀ p ((φ→ p)→ (φ′→ p)→ p)

(where p /∈ fv(φ, φ′)).

• Negation: ¬φ
def
= φ→ false .

• Existential quantification:

∃ p (φ)
def
= ∀ p′ (∀ p (φ→ p′)→ p′)

(where p′ /∈ fv(φ, p)).
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Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that ba is

rational.

Proof. Either
√

2
√

2 is rational, or it is not (LEM!).

If it is, we can take a = b =
√

2, since
√

2 is irrational by a

well-known theorem attributed to Euclid.

If it is not, we can take a =
√

2 and b =
√

2
√

2, since then

ba = (
√

2
√

2)
√

2 =
√

2
√

2×√
2 =
√

22 = 2.

QED
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