(a) (i) Define the notion of *contextual equivalence* in PCF.

[2 marks]

(*ii*) Consider the following two closed PCF terms of type $nat \rightarrow nat \rightarrow nat$.

$$F \stackrel{\text{def}}{=} \mathbf{fix} \big(\mathbf{fn} f : nat \to nat \to nat. \mathbf{fn} x : nat. \mathbf{fn} y : nat.$$

$$\mathbf{if \ zero}(x) \mathbf{then} \mathbf{0}$$

$$\mathbf{else \ if \ zero}(y) \mathbf{then} \mathbf{0}$$

$$\mathbf{else \ succ} \big(f (\mathbf{pred} \ x) (\mathbf{pred} \ y) \big) \big)$$

$$G \stackrel{\text{def}}{=} \mathbf{fix} \big(\mathbf{fn} \, g : nat \to nat \to nat. \, \mathbf{fn} \, x : nat. \, \mathbf{fn} \, y : nat.$$

$$\mathbf{if} \, \mathbf{zero}(y) \, \mathbf{then} \, \mathbf{0}$$

$$\mathbf{else} \, \mathbf{if} \, \mathbf{zero}(x) \, \mathbf{then} \, \mathbf{0}$$

$$\mathbf{else} \, \mathbf{succ} \big(\, g \, (\mathbf{pred} \, x) \, (\mathbf{pred} \, y) \, \big) \, \big)$$

Are F and G contextually equivalent? Justify your answer. [5 marks]

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \cong_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts C for which $C[M_1]$ and $C[M_2]$ are closed terms of type γ , where $\gamma = nat$ or $\gamma = bool$, and for all values $V : \gamma$,

 $\mathcal{C}[M_1] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}[M_2] \Downarrow_{\gamma} V.$

(a) (i) Define the notion of *contextual equivalence* in PCF. [2 marks]

(*ii*) Consider the following two closed PCF terms of type $nat \rightarrow nat \rightarrow nat$.

```
F \stackrel{\text{def}}{=} \operatorname{fix} \left( \operatorname{fn} f : nat \to nat \to nat. \operatorname{fn} x : nat. \operatorname{fn} y : nat.

\operatorname{if} \operatorname{zero}(x) \operatorname{then} \mathbf{0}

\operatorname{else} \operatorname{if} \operatorname{zero}(y) \operatorname{then} \mathbf{0}

\operatorname{else} \operatorname{succ} \left( f \operatorname{(pred} x) \operatorname{(pred} y) \right) \right)

G \stackrel{\text{def}}{=} \operatorname{fix} \left( \operatorname{fn} g : nat \to nat \to nat. \operatorname{fn} x : nat. \operatorname{fn} y : nat.

\operatorname{if} \operatorname{zero}(y) \operatorname{then} \mathbf{0}

\operatorname{else} \operatorname{if} \operatorname{zero}(x) \operatorname{then} \mathbf{0}

\operatorname{else} \operatorname{succ} \left( g \operatorname{(pred} x) \operatorname{(pred} y) \right) \right)
```

Are F and G contextually equivalent? Justify your answer. [5 marks]

 $IDEA: \begin{cases} FO \Omega & evaluates to 0 \\ GO \Omega & does not evaluate to any value \\ (where \Omega \stackrel{\text{def}}{=} fix(fnx:nat.x)) \end{cases}$

so context $C \leq (-) O \Omega$ satisfies $\int C[F] V_{nat} O$ $\int C[G] V_{nat}$

and hence

F& G are not contextually equivalent

FON evaluates to 0 GON does not evaluate to any value Easiest (?) way to see this *I* is via the transition relation for PCF (Fig. 4, page 61):

FON evaluates to 0 GON does not evaluate to any value Easiest (?) way to see this) is via the transition relation for PCF (Fig. 4, page 61): if zero(0) then 0 else $FO \Omega \rightarrow^*$ if zero (S2) then O else $Succ(F(pred(0))(pred(\Omega)))$

FOR evaluates to 0
GOR does not evaluate to any value
Easiest (?) way to see this
$$\mathcal{I}$$
 is via the
transition relation for PCF (Fig.4, page 61):
FOR \rightarrow^{*} if zero(0) then 0 else
if zero(12) then 0 else \rightarrow 0
succ (F(pred(0))(pred(12)))
GOR \rightarrow^{*} if zero(2) then 0 else
if zero(0) then 0 else
 $f = 2ero(0)$ then 0 else
 $f = 2ero(1)$ then 0 else
 $f = 2ero(1$

FOR evaluates to 0 GOR does not evaluate to any value Another way to see this f is via the evaluation relation for PCF (Fig. 3, page 59):

FOIR evaluates to 0
GOR does not evaluate to any value
Yet another way to see this
$$f$$
 is via the
denotational semantics $f PCF(p69 \text{ et seq.}):$
 $[F] = fix(\Phi)$ where $\Phi:(N_1 \rightarrow N_1 \rightarrow N_1 \rightarrow N_1) \rightarrow (N_1 \rightarrow N_1 \rightarrow N_1)$
 $f x = L \text{ or}(x > 0 \text{ eys})$
 $f(f(x)(y)) = \begin{cases} \bot & \text{if } x = 0 \text{ or}(x > 0 \text{ eys}) \\ f(x-1)(y-1)+1 & \text{if } x > 0 \text{ eys} \end{cases}$

FOR evaluates to 0
GOR does not evaluate to any value
Yet another way to see this
$$\int$$
 is via the
denotational semantics of PCF (p69 et seq.):
 $IF = fix(\Phi)$ where $\Phi: (N_1 \rightarrow N_1 \rightarrow N_1) \rightarrow (N_1 \rightarrow N_1 \rightarrow N_1)$
 $f = x = 1 \text{ or } (x > 0 \text{ s } y = 1)$
 $\Phi(f(x)(y) = \begin{cases} \bot & \text{if } x = 1 \text{ or } (x > 0 \text{ s } y = 1) \\ 0 & \text{if } x = 0 \text{ or } (x > 0 \text{ s } y = 0) \\ f(x-1)(y-1)+1 & \text{if } x > 0 \text{ s } y > 0 \end{cases}$

So $\llbracket FO \Omega \rrbracket = \llbracket F \rrbracket (0)(\bot) = \textcircled{}(\llbracket F \rrbracket)(0)(\bot) = 0$

FOI evaluates to 0
GOI does not evaluate to any value
Vet another way to see this *I* is via the
denotational semantics
$$f PCF(p69 \text{ et seq.}):$$

 $[GI] = fix(I)$ where $Y:(N_1 \rightarrow N_1 \rightarrow N_1) \rightarrow (N_1 \rightarrow N_1 \rightarrow N_1)$
 $f = x y$
 $Y(f(x)(y) = \begin{cases} \bot & if y = L \text{ or}(y > 0 \& x = 1) \\ 0 & if y = 0 \text{ or}(y > 0 \& x = 0) \\ f(x-1)(y-1)+1 & if x > 0 \& y > 0 \end{cases}$

SO [GOS] = [G](0)(1) = Y(IGI)(0)(1) = 1

FOR evaluates to 0
GOR does not evaluate to any value
Yet another way to see thris
$$\mathcal{I}$$
 is via the
denotational semantics of PCF (p69 et seq.):
So $[FOR] = 0 = [O]$
 $[GOR] = 1 \neq [O]$
By the fadequary property we have $\begin{cases} FOR! nat 0 \\ GOR! for 0 \end{cases}$

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.

• Soundness.

For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

• Adequacy.

For $\tau = bool \text{ or } nat$, $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

FOR evaluates to 0
GOR does not evaluate to any value
Yet another way to see this I is via the
denotational semantics of PCF (p69 et seq.):
So
$$[FOR] = 0 = [O]$$

 $[GOR] = 1 \neq [O]$
By the fadequary property we have for that 0
So ras before, $F \neq_{ctx} G : nat \rightarrow nat - nat$

(b) (i) Define a closed PCF term $H: (nat \to nat \to nat) \to nat \to nat \to nat$ such that $\llbracket \mathbf{fix}(H) \rrbracket \in (\mathbb{N}_{\perp} \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}))$ satisfies

 $\llbracket \mathbf{fix}(H) \rrbracket (i) (j) = \max(i, j)$

for all $i, j \in \mathbb{N}$.

[4 marks]

IDEA $\max(i,j)$ is uniquely specified by $\begin{cases} \max(0,j) = j \\ \max(i,0) = i \\ \max(i+1,j+1) = \max(i,j)+1 \end{cases}$

IDEA
$$\max(i,j)$$
 is uniquely specified by

$$\begin{cases} \max(0,j) = j \\ \max(i,0) = i \\ \max(i+1,j+1) = \max(i,j)+1 \end{cases}$$
So $\max(i,j) = \mathbb{E}fix(H)\mathbb{I}(i)(j)$ for

(*ii*) Let

$$S \stackrel{\text{def}}{=} \{ f \in \left(\mathbb{N}_{\perp} \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}) \right) \mid f(x)(y) = f(y)(x) \text{ for all } x, y \in \mathbb{N}_{\perp} \}$$

Show that the subset $S \subseteq (\mathbb{N}_{\perp} \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}))$ is admissible. [4 marks]

(*iii*) Show that

$$\llbracket \mathbf{fix}(H) \rrbracket (x) (y) = \llbracket \mathbf{fix}(H) \rrbracket (y) (x)$$

for all $x, y \in \mathbb{N}_{\perp}$.

[5 marks]

[Hint: Use Scott's Fixed-Point Induction Principle.]

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n\ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

 $\Box_{\mathbb{N}^{T} \to \mathbb{N}^{T} \to \mathbb{N}^{T}} (x) = \Box_{\mathbb{N}^{T} \to \mathbb{N}^{T}}$

$$\begin{split} \bot_{\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}} (x)(y) &= \bot_{\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}} (y) &= \bot_{\mathbb{N}_{\perp}} \\ \text{Similarly} \quad \bot_{\mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}} (y)(x) &= \bot_{\mathbb{N}_{\perp}} \\ \text{So} \quad \bot_{\mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}} \in S \end{split}$$

$$\begin{split} & \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1}} (x)(y) = \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1}} (y) = \perp_{\mathbb{N}_{1}} \\ & \text{Similally} \quad \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1}} (y)(x) = \perp_{\mathbb{N}_{1}} \\ & \text{So} \quad \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1}} \in S \\ & \text{If} \quad f_{o} \subseteq f_{1} \subseteq f_{2} \subseteq \cdots \text{ in } \mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1} \\ & \text{and} \quad f_{n} \in S \text{ for all } n = 0, 1, 2, \cdots, \text{ then} \\ & (\sqcup_{n \geq 0} f_{n})(x)(y) = (U_{n \geq 0} f_{n}(x))(y) \end{aligned}$$

$$\begin{split} & \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1}} (x)(y) = \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1}} (y) = \perp_{\mathbb{N}_{1}} \\ & \text{Similarly} \quad \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1}} (y)(x) = \perp_{\mathbb{N}_{1}} \\ & \text{So} \quad \perp_{\mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1}} \in S \\ & \text{If} \quad f_{o} \equiv f_{1} \equiv f_{2} \equiv \cdots \text{ in } \mathbb{N}_{1} \to \mathbb{N}_{1} \to \mathbb{N}_{1} \\ & \text{and} \quad f_{n} \in S \text{ for all } n = o_{1}i, z, \cdots, \text{ then} \\ & (\sqcup_{n \geq 0} f_{n})(x)(y) = (\bigcup_{n \geq 0} f_{n}(x))(y) = \sqcup_{n \geq 0} f_{n}(x)(y) \end{aligned}$$

$$\begin{split} \bot_{N_{1} \rightarrow N_{1} \rightarrow N_{1}} (x)(y) &= \bot_{N_{1} \rightarrow N_{1}} (y) &= \bot_{N_{1}} \\ \text{Similarly} \quad \bot_{N_{1} \rightarrow N_{1} \rightarrow N_{1}} (y)(x) &= \bot_{N_{1}} \\ \text{So} \quad \bot_{N_{1} \rightarrow N_{1} \rightarrow N_{1}} \in S \\ \text{If} \quad f_{o} &\equiv f_{1} \\ \equiv f_{2} \\ \equiv \cdots \text{ in } N_{1} \rightarrow N_{1} \rightarrow N_{1} \\ \text{and} \quad f_{n} \\ \in S \quad \text{for all } n = 0, 1, 2, \cdots, \text{ then} \\ (\sqcup_{n \geq 0} \\ f_{n}(x)(y) = (\bigcup_{n \geq 0} \\ f_{n}(x))(y) = \bigcup_{n \geq 0} \\ f_{n}(y)(x) \\ \end{bmatrix}$$

(ii) Let

$$S \stackrel{\text{def}}{=} \{ f \in \left(\mathbb{N}_{\perp} \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}) \right) \mid f(x)(y) = f(y)(x) \text{ for all } x, y \in \mathbb{N}_{\perp} \}$$

Show that the subset $S \subseteq (\mathbb{N}_{\perp} \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}))$ is admissible. [4 marks]

(*iii*) Show that

$$\llbracket \mathbf{fix}(H) \rrbracket (x) (y) = \llbracket \mathbf{fix}(H) \rrbracket (y) (x)$$

for all $x, y \in \mathbb{N}_{\perp}$.

[5 marks]

[Hint: Use Scott's Fixed-Point Induction Principle.]

Scott's Fixed Point Induction Principle

Let $f: D \to D$ be a continuous function on a domain D. For any <u>admissible</u> subset $S \subseteq D$, to prove that the least fixed point of f is in S, *i.e.* that

$$fix(f) \in S$$
,

it suffices to prove

 $\forall d \in D \ (d \in S \ \Rightarrow \ f(d) \in S) \ .$

Want to show $\mathbb{E} fix(H)] \in S$ i.e. $fix(\mathbb{H}]) \in S$ Since S is admissible, by Scott Induction suffices to show

 $\forall f \in [N_{J}, N_{J}, N_{J}, f \in S \implies [H](f) \in S$

$$H \stackrel{def}{=} fn f: nat \rightarrow nat \rightarrow nat. fn x: nat. fn y: nat.
if zero(x) then y else
if zero(y) then x else
succ(f (pred(sc))(pred(y)))
Thus
$$IH](f)(xXy) = \begin{cases} \bot & \text{if } x = 0\\ \downarrow & \text{if } x = 0\\ \bot & \text{if } x > 0 & y = 1\\ x & \text{if } x > 0 & y = 0\\ f(x + xy - 1) + 1 & \text{if } x > 0 & y > 0 \end{cases}$$$$

$$\begin{bmatrix} H \end{bmatrix}(f)(y|Xx) = \begin{cases} \bot & \text{if } y = \bot \\ x & \text{if } y = 0 \\ \bot & \text{if } y > 0 & x = \bot \\ y & \text{if } y > 0 & x = 0 \\ f(y-1|Xx-1)+1 & \text{if } y > 0 & x > 0 \\ f(y-1|Xx-1)+1 & \text{if } y > 0 & x > 0 \\ \downarrow & \text{if } x = 0 \\ \bot & \text{if } x = 0 \\ \bot & \text{if } x > 0 & y = \bot \\ x & \text{if } x > 0 & y = 0 \\ f(x-1|Xy-1)+1 & \text{if } x > 0 & y > 0 \end{cases}$$

$$IH_{I}(f)(y|x) = \begin{cases} \bot & \text{if } y = \bot & \text{or } y = \bot \\ \max(y,x) & \text{if } y = 0 & \text{or } x = 0 \\ f(y-1|x-1)+1 & \text{if } y>0 & x>0 \\ \bot & \text{if } y=\bot & \text{or } y=\bot \\ IH_{I}(f)(x|x|y) = \begin{cases} \bot & \text{if } y=0 & \text{or } y=0 \\ \bot & \text{if } y=0 & \text{or } y=0 \\ \max(x,y) & \text{if } x=0 & \text{or } y=0 \\ f(x-1|x-1)+1 & \text{if } y>0 & y>0 \end{cases}$$

$$IH J(F)(y|x) = \begin{cases} \bot & \text{if } y = \bot & \text{or } y = \bot \\ \max(y,x) & \text{if } y = 0 & \text{or } x = 0 \\ provided \\ f \in S \\ f \in S \\ \bot & \text{if } y = \bot & \text{or } y = \bot \\ IH J(F)(x|x|y) = \begin{cases} \bot & \text{if } y = 0 & \text{or } y = 0 \\ \downarrow & \text{if } y = \bot & \text{or } y = \bot \\ \max(x,y) & \text{if } x = 0 & \text{or } y = 0 \\ \text{i.e. } CH J(F) \in S \\ \text{when } f \in S \end{cases} \quad f(x, xy-1)+1 & \text{if } y > 0 & & & \\ f(x, xy-1)+1 & \text{if } y > 0 & & & \\ f(x, xy-1)+1 & \text{if } y > 0 & & \\ f(x, xy-1)+1 & \text{if } y > 0 & & \\ f(x, xy-1)+1 & \text{if } y > 0 & & \\ f(x, xy-1)+1 & \text{if } y > 0 & & \\ f(x, xy-1)+1 & & \\ f(x, y) > 0 & & \\ f(x, xy-1)+1 & & \\ f(x, y) > 0 & & \\ f(x, xy-1)+1 & & \\ f(x, y) > 0 & & \\ f($$