Chapter 4 [p45]

Scott Induction

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n\ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

For the domain
$$\Omega = \begin{bmatrix} 0 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
 the subset
• $\{2,4,6\}$ is chain-closed, not admissible
• $\{0,2,4,6\}$ is (chain-closed &) admissible
• $\{0,2,4,6\}$ is (chain-closed &) admissible
• $\{0,2,4,6,...\}$ is not chain-closed
• $\{0,2,4,6,...\}$ us of chain-closed

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n\ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D.

Scott's Fixed Point Induction Principle

Let $f: D \to D$ be a continuous function on a domain D. For any <u>admissible</u> subset $S \subseteq D$, to prove that the least fixed point of f is in S, *i.e.* that

$$fix(f) \in S$$
,

it suffices to prove

 $\forall d \in D \ (d \in S \ \Rightarrow \ f(d) \in S) \ .$

Tarski's Fixed Point Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

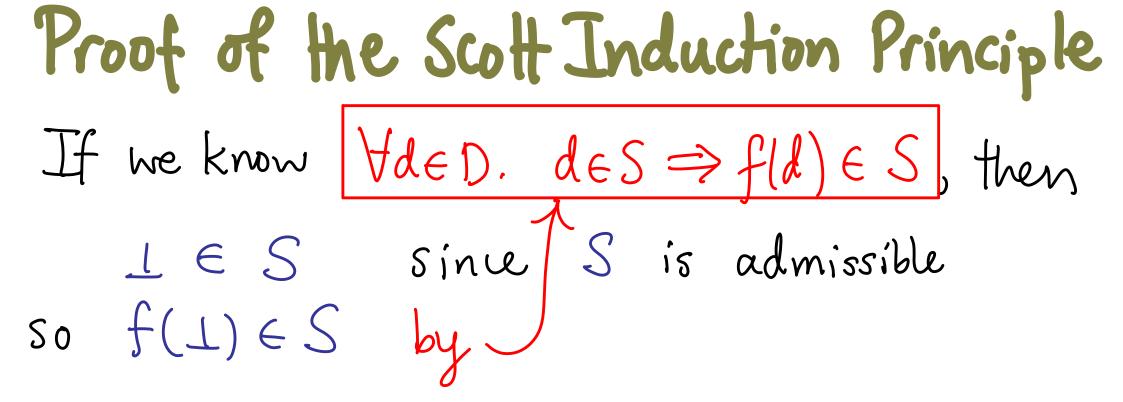
• f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

• Moreover, fix(f) is a fixed point of f, *i.e.* satisfies f(fix(f)) = fix(f), and hence is the least fixed point of f.

where
$$\begin{cases} f^{o}(\bot) \stackrel{\Delta}{=} 1 \\ f^{n+1}(\bot) \stackrel{\Delta}{=} f(f^{n}(\bot)) \end{cases}$$

Proof of the Scott Induction Principle If we know $\forall d \in D$. $d \in S \Rightarrow f(d) \in S$, then $L \in S$ since S is admissible



Proof of the Scott Induction Principle If we know $\forall d \in D$. $d \in S \Rightarrow f(d) \in S$, then $L \in S$ since S is admissible So $f(L) \in S$ So $f(f(L)) \in S$ by $f^{n}(L) \in S$ for all $n \in \mathbb{N}$

Proof of the Scott Induction Principle If we know $\forall d \in D$. $d \in S \Rightarrow f(d) \in S$, then $L \in S$ since S is admissible so $f(T) \in S$ So $f(f(L)) \in S$ $f^{n}(\bot) \in S$ for all $n \in \mathbb{N}$ Hence $\bigcup_{n \ge 0} f^n(x) \in S$ since S is admissible $\text{ftrat is}, \quad \text{fix}(f) \in S$ QED

Example 4.2.1
Given formain D
continuous function
$$f: D \times D \times D \rightarrow D$$

then $\begin{cases} g: D \times D \rightarrow D \times D & \text{is continuous.} \\ g(d_1, d_2) = (f(d_1, d_1, d_2), f(d_1, d_2, d_2)) \end{cases}$
So by Tarski's FPT we get $f \times (g) \in D \times D$.

Claim: $U_1 = U_2$, where $(u_1, u_2) = fix(g)$

Example 4.2.1

$$\begin{cases}
g: D \times D \rightarrow D \times D \\
g(d_1, d_2) = (f(d_1, d_1, d_2), f(d_1, d_2, d_2)) \\
Claim: u_1 = u_2, where (u_1, u_2) = fi \times (g)
\end{cases}$$
Proof $\Delta \triangleq \{(d_1, d_1) | d \in D\}$ is an admissible subset of $D \times D$ because

$$(\perp_{j, \perp}) \in \Delta$$

$$(\perp_{j, \perp}) \in \Delta$$

$$(d_0, d_0') \equiv (d_1, d_1') \equiv \cdots \otimes \forall fn. (d_n, d_n') \in \Delta \text{ implies} \\
\sqcup_{n \geq 0} (d_{n_1} d_n') = (\sqcup_{n \geq 0} d_n, \sqcup_{n \geq 0} d_n') = (\sqcup_{n \geq 0} d_n, \sqcup_{n \geq 0} d_n) \in L$$

Example 4.2.1

$$\begin{cases} g: D \times D \rightarrow D \times D \\ g(d_1, d_2) = (f(d_1, d_1, d_2), f(d_1, d_2, d_2)) \\ Claim: u_1 = u_2, where (u_1, u_2) = f_1 \times (g) \\ \hline \\ Proof \qquad \Delta = \{(d, d) | d \in D \} \text{ admissible} \\ and \qquad \forall (d, d') \in D \times D. \quad (d, d') \in D \Rightarrow g(d, d') \in \Delta \\ because \\ (d, d') \in \Delta \implies d = d' \\ \implies g(d, d') = (f(d, d, d), f(d, d, d)) \in \Delta \end{cases}$$

Example 4.2.1

$$\begin{cases} g: D \times D \rightarrow D \times D \\ g(d_1, d_2) = (f(d_1, d_1, d_2), f(d_1, d_2, d_2)) \\ Claim: u_1 = u_2, where (u_1, u_2) = fix(g) \\ \\ \hline Mouf \qquad \Delta = \{(d, d) | d \in D \} \text{ admissible} \\ \\ and \quad \forall (d, d') \in D \times D. \quad (d, d') \in D \Rightarrow g(d, d') \in \Delta \\ \\ \\ So by Scott Induction \\ fix(g) \in \Delta \\ \\ \hline QED \\ \end{cases}$$

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

• The subsets

and $\begin{cases} (x,y) \in D \times D \mid x \sqsubseteq y \\ \\ \{(x,y) \in D \times D \mid x = y \} \end{cases}$

of $D \times D$ are chain-closed.

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$

is a chain-closed subset of D.

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$

is a chain-closed subset of D.

Proof: if $d_0 \equiv d_1 \subseteq d_2 \subseteq \dots$ in $D \& \forall n. d_n \in f S$

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$

is a chain-closed subset of D.

Proof: if $d_0 \equiv d_1 \subseteq d_2 \equiv \dots$ in D & $\forall n. d_n \in f$ 'S then $\forall n. f(d_n) \in S$, so $\bigcup_{n \geq 0} f(d_n) \in S$ ('cos Sch.-cl.)

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$

is a chain-closed subset of D.

Proof: if
$$d_0 \equiv d_1 \subseteq d_2 \equiv \dots$$
 in D & $\forall n. d_n \in f'S$
then $\forall n. f(d_n) \in S$, so $\bigcup_{n \geq 0} f(d_n) \in S$ ('cos S ch.-cl.)
So $f(\bigcup_{n \geq 0} d_n) \in S$ ('cos f cts.)
So $\bigcup_{n \geq 0} d_n \in f'S$ 56

-1

 $f(\perp) \sqsubseteq g(\perp) \implies fix(f) \sqsubseteq fix(g)$.

 $f(\bot) \sqsubseteq g(\bot) \implies \mathit{fix}(f) \sqsubseteq \mathit{fix}(g) \ .$

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of D.

Since

 $f(x)\sqsubseteq g(x) \Rightarrow g(f(x))\sqsubseteq g(g(x)) \Rightarrow f(g(x))\sqsubseteq g(g(x))$

we have that

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.

Given continuous functions

$$f: D \rightarrow E \qquad g: D \rightarrow F$$
we get a continuous function

$$< f, g > : D \rightarrow E \times F$$
given by
$$< f, g > = \lambda d \in D. (f(d), g(d))$$
(Check:

$$< f, g > (\bigcup_{n \ge 0} d_n) = (f(\bigcup_{n \ge 0} d_n), g(\bigcup_{n \ge 0} d_n))$$

$$= (\bigcup_{n \ge 0} f(d_n), \bigcup_{n \ge 0} g(d_n))$$

$$= \bigcup_{n \ge 0} (f(d_n), g(d_n))$$

 $f(\perp) \sqsubseteq g(\perp) \implies fix(f) \sqsubseteq fix(g)$.

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of *D*. Since

 $f(x)\sqsubseteq g(x) \Rightarrow g(f(x))\sqsubseteq g(g(x)) \Rightarrow f(g(x))\sqsubseteq g(g(x))$

we have that

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.

 $f(\bot) \sqsubseteq g(\bot) \implies \mathit{fix}(f) \sqsubseteq \mathit{fix}(g) \ .$

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv (f(x) \sqsubseteq g(x))$ of D.

Since

SO

 $f(x)\sqsubseteq g(x) \Rightarrow g(f(x))\sqsubseteq g(g(x)) \Rightarrow f(g(x))\sqsubseteq g(g(x))$

we have that

Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of D then $S \cup T$ and $S \cap T$ are chain-closed subsets of D.
- If $\{S_i\}_{i \in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i \in I} S_i$ is a chain-closed subset of D.
- If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

S,T chain-closed => SUT chain-closed Suppose do Ed, Ed, Ed, E. in D & Yn. dn ESUT If $\bigcup_{n>0} d_n \in S$, we are done. So suppose Unzodn & S <tor each m>0, $(\forall n \ge m. d_n \in S) \Rightarrow \bigcup_{n \ge 0} d_n = \bigcup_{n \ge m} d_m \in S \times$

S, T chain-closed => SUT chain-closed Suppose $d_0 \subseteq d_1 \subseteq d_2 \subseteq \cdots$ in D & $\forall n. d_n \in S \cup T$ If $\bigcup_{n>0} d_n \in S$, we are done. So suppose Unzodn & S tor each m > 0, $(\forall n \ge m. d_n \in S) \Rightarrow \bigcup_{n \ge 0} d_n = \bigcup_{n \ge m} d_m \in S$ So $\neg (\forall n \ge m. d_n \in S)$ i.e. Inzm. dn eT since -

S,T chain-closed \Rightarrow SUT chain-closed Suppose $d_0 \equiv d_1 \equiv d_2 \equiv \cdots$ in D & $\forall n. d_n \in S \cup T$ If $\bigcup_{n \geq 0} d_n \in S$, we are done. So suppose $\bigcup_{n \geq 0} d_n \notin S$ For each $m \geq 0$, $\exists n \geq m \cdot d_n \in T$

S,T chain-closed => SUT chain-closed Suppose $d_0 \equiv d_1 \equiv d_2 \equiv \dots$ in D & $\forall n. d_n \in S \cup T$ If $\bigcup_{n \ge 0} d_n \in S$, we are done. So suppose Unzodn & S For each $m \ge 0$, $\exists n \ge m \cdot d_n \in T$ sotisfying So we can choose $N_0 \leq N_1 \leq N_2 \leq \cdots$ $\forall m. m \leq n_m \ll d_{n_m} \in T.$ So $\bigsqcup_{n \ge 0} d_n = \bigsqcup_{m \ge 0} d_{n_m} \in T$ Q.E.D.

Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of D then $S \cup T$ and $S \cap T$ are chain-closed subsets of D.
- If $\{S_i\}_{i \in I}$ is a family of chain-closed subsets of Dindexed by a set I, then $\bigcap_{i \in I} S_i$ is a chain-closed subset of D. $= \{ d \in D \mid \forall i, d \in S_i \}$
- If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

N.B. in general
$$\bigcup_{i \in J} S_i = \{d \mid \exists i, d \in S_i\} \notin D - S$$

need not be chain-closed.

for each
$$i \in \mathbb{N}$$

 $S_i = \{0, 1, 2, ..., i\}$ is chain-closed subset
of the domain $\Omega = \{i \in i \\ i \in i\}$
but
 $\bigcup_{i \in \mathbb{N}} S_i = \mathbb{N}$ is not a chain-closed subset
of the domain $\Omega = \{i \in i \\ i \in i\}$

$$S = \{0, 2, 4, \dots, \} \cup \{\omega\} \text{ is chain-closed subset}$$

$$uf \text{ the domain } \Omega = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\}$$

$$D-S = \{1, 3, 5, \dots\}$$

$$is \text{ not a chain-closed subset}$$

$$of \text{ the domain } \Omega = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\}$$

Example (III): Partial correctness

Let $\mathcal{F}: State \rightarrow State$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$.

For all
$$x, y \ge 0$$
,
 $\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow$
 $\implies \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y].$

Recall that

$$\mathcal{F} = fix(f)$$

where $f : (State \rightarrow State) \rightarrow (State \rightarrow State)$ is given by
 $f(w) = \lambda(x, y) \in State. \begin{cases} (x, y) & \text{if } x \leq 0\\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$

Proof by Scott induction.

We consider the admissible subset of $(State \rightarrow State)$ given by

$$S = \left\{ \begin{array}{l} w & \forall x, y \ge 0. \\ & w[X \mapsto x, Y \mapsto y] \downarrow \\ & \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto !x \cdot y] \end{array} \right\}$$

and show that

 $w \in S \implies f(w) \in S$.

Suppose WES. Want to show $f(w) \in S$, i.e. $x,y \ge 0 \& f(w)(x,y) \downarrow \implies f(w)(x,y) = (o, !x \cdot y)$ So suppose $x, y \ge 0$ & $f(w)(x, y) \downarrow$ Case x = 0: f(w)(x,y) = (x,y) = (0,y) = (0, 0,y) = (0, 1, x, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, x, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, x, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (0, y) = (0, 1, y) f(w)(x,y) = (x,y) = (x,y) f(w)(x,y) = (x,y) = (x,y) f(w)(x,y) = (x,y)

Suppose WES. Want to show $f(w) \in S$, i.e. $x,y \ge 0 \& f(w)(x,y) \downarrow \implies f(w)(x,y) = (o, !x \cdot y)$ So suppose $x, y \ge 0$ & $f(w)(x, y) \downarrow$ Case x > 0: Since f(w)(x,y)get $\omega(x-1, x-y) \downarrow$ by definition of f

Suppose WES. Want to show $f(w) \in S$, i.e. $x,y \ge 0 \& f(w)(x,y) \downarrow \implies f(w)(x,y) = (o, !x \cdot y)$ So suppose $x, y \ge 0 & f(w)(x, y) \downarrow$ Case x > 0: Since f(w)(x,y)get $\omega(x-1, x-y) \downarrow$ by definition of f But sc-1, x-y zo & wes by def. of S $S \sigma \quad \omega(x-1, x \cdot y) = (\sigma, (x-1) \cdot (x \cdot y))$

Suppose WES. Want to show $f(w) \in S$, i.e. $x,y \ge 0 \& f(w)(x,y) \downarrow \implies f(w)(x,y) = (o, !x \cdot y)$ So suppose $x, y \ge 0$ & $f(w)(x, y) \downarrow$ Case x > 0: Since f(w)(x,y)get $\omega(x-1, x-y) \downarrow$ by definition of f But sc-1, x-y > 0 & wes by def. of S $S \sigma \omega(x-1, x \cdot y) = (\sigma, (x-1) \cdot (x-y))$ $= (0, !x \cdot y)$ $= (0, !x \cdot y)$ $= (0, !x \cdot y)$ $\int (0, !x \cdot y) = (0, !x \cdot y)$ $\int def: eff$