


Cpo’s and domains

A chain complete poset, or cpo for short, is a poset (D,!) in
which all countable increasing chains d0 ! d1 ! d2 ! . . . have
least upper bounds,

⊔

n≥0 dn:

∀m ≥ 0 . dm !
⊔

n≥0

dn (lub1)

∀d ∈ D . (∀m ≥ 0 . dm ! d) ⇒
⊔

n≥0

dn ! d. (lub2)

A domain is a cpo that possesses a least element, ⊥:

∀d ∈ D .⊥ ! d.

32



Discrete cpo’s and flat domains

For any setX , the relation of equality

x ! x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,!) into a cpo, called the discrete cpo with underlying
setX .
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Discrete cpo’s and flat domains

For any setX , the relation of equality

x ! x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,!) into a cpo, called the discrete cpo with underlying
setX .

LetX⊥
def
= X ∪ {⊥}, where⊥ is some element not inX . Then

d ! d′
def
⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,!) into a domain (with least element ⊥), called the
flat domain determined byX .
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Binary product of cpo’s and domains

The product of two cpo’s (D1,!1) and (D2,!2) has underlying
set

D1 ×D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}

and partial order! defined by

(d1, d2) ! (d′1, d
′
2)

def
⇔ d1 !1 d

′
1 & d2 !2 d

′
2 .

(x1, x2) ! (y1, y2)

x1 !1 y1 x2 !2 y2
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Lubs of chains are calculated componentwise:
⊔

n≥0

(d1,n, d2,n) = (
⊔

i≥0

d1,i,
⊔

j≥0

d2,j) .

If (D1,!1) and (D2,!2) are domains so is (D1 ×D2,!)
and⊥D1×D2

= (⊥D1
,⊥D2

).
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Continuous functions of two arguments

Proposition. LetD, E, F be cpo’s. A function
f : (D × E)→ F is monotone if and only if it is monotone in
each argument separately:

∀d, d′ ∈ D, e ∈ E. d % d′ ⇒ f(d, e) % f(d′, e)

∀d ∈ D, e, e′ ∈ E. e % e′ ⇒ f(d, e) % f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains
in each argument separately:

f(
⊔

m≥0

dm , e) =
⊔

m≥0

f(dm, e)

f(d ,
⊔

n≥0

en) =
⊔

n≥0

f(d, en).
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Diagonalising a double chain

Lemma. LetD be a cpo. Suppose that the doubly-indexed family
of elements dm,n ∈ D (m,n ≥ 0) satisfies

m ≤ m′ & n ≤ n′ ⇒ dm,n % dm′,n′ . (†)
Then ⊔

n≥0

d0,n %
⊔

n≥0

d1,n %
⊔

n≥0

d2,n % . . .

and ⊔

m≥0

dm,0 %
⊔

m≥0

dm,1 %
⊔

m≥0

dm,3 % . . .

Moreover

⊔

m≥0




⊔

n≥0

dm,n



 =
⊔

k≥0

dk,k =
⊔

n≥0




⊔

m≥0

dm,n



 .

37



Function cpo’s and domains

Given cpo’s (D,!D) and (E,!E), the function cpo
(D →E,!) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ! f ′ def
⇔ ∀d ∈ D . f(d) !E f ′(d).
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Function cpo’s and domains

Given cpo’s (D,!D) and (E,!E), the function cpo
(D →E,!) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ! f ′ def
⇔ ∀d ∈ D . f(d) !E f ′(d).

• A derived rule:

f !(D→E) g x !D y

f(x) ! g(y)
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):
⊔

n≥0

fn = λd ∈ D.
⊔

n≥0

fn(d) .

If E is a domain, then so isD →E and⊥D→E(d) = ⊥E , all
d ∈ D.
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Lubs of chains are calculated ‘argumentwise’ (using lubs in E):
⊔

n≥0

fn = λd ∈ D.
⊔

n≥0

fn(d) .

• A derived rule:

(⊔

n fn
)

(
⊔

m xm) =
⊔

k fk(xk)

If E is a domain, then so isD →E and⊥D→E(d) = ⊥E , all
d ∈ D.
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Continuity of composition

For cpo’sD,E, F , the composition function

◦ :
(

(E → F )× (D → E)
)

−→ (D → F )

defined by setting, for all f ∈ (D → E) and g ∈ (E → F ),

g ◦ f = λd ∈ D. g
(

f(d)
)

is continuous.
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Continuity of the fixpoint operator

LetD be a domain.

By Tarski’s Fixed Point Theorem we know that each
continuous function f ∈ (D →D) possesses a least
fixed point, fix (f) ∈ D.

Proposition. The function

fix : (D →D)→D

is continuous.
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Pre-fixed points

LetD be a poset and f : D→D be a function.

An element d ∈ D is a pre-fixed point of f if it satisfies
f(d) # d.

The least pre-fixed point of f , if it exists, will be written

fix (f)

It is thus (uniquely) specified by the two properties:

f(fix (f)) # fix (f) (lfp1)

∀d ∈ D. f(d) # d ⇒ fix (f) # d. (lfp2)
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