[Chapter 3, p33]

Constructions on Domains

Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_{n}$:

$$
\begin{align*}
& \forall m \geq 0 . d_{m} \sqsubseteq \bigsqcup_{n \geq 0} d_{n} \tag{lub1}\\
& \forall d \in D .\left(\forall m \geq 0 . d_{m} \sqsubseteq d\right) \Rightarrow \bigsqcup_{n \geq 0} d_{n} \sqsubseteq d .
\end{align*}
$$

A domain is a cpo that possesses a least element, \perp :

$$
\forall d \in D . \perp \sqsubseteq d
$$

Discrete cpo's and flat domains

For any set X, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.

Discrete cpo's and flat domains

For any set X, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.
Let $X_{\perp} \stackrel{\text { def }}{=} X \cup\{\perp\}$, where \perp is some element not in X. Then

$$
d \sqsubseteq d^{\prime} \stackrel{\text { def }}{\Leftrightarrow}\left(d=d^{\prime}\right) \vee(d=\perp) \quad\left(d, d^{\prime} \in X_{\perp}\right)
$$

makes $\left(X_{\perp}, \sqsubseteq\right)$ into a domain (with least element \perp), called the flat domain determined by X.
$E g \mathbb{N}_{\perp}$ looks like:

Note that every chain $d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \cdots$ in X_{\perp} is eventually constant (i.e. $\left.\exists N . \forall n \geqslant N . d_{n}=d_{N}\right)$ and so has a lab.

Note that every chain $d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \cdots$ in X_{\perp} is eventually constant (i.e. $\left.\exists N . \forall n \geqslant N . d_{n}=d_{N}\right)$ and so has a lab.

Hence
X_{\perp} does have labs of chains

Note that every chain $d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \cdots$ in X_{\perp} is eventually constant (i.e. $\left.\exists N . \forall n \geqslant N . d_{n}=d_{N}\right)$ and so has a llb.

Hence

- X_{\perp} does have labs of chains
- a function $f: X_{\perp} \rightarrow D$ (with D a domain) is continuous ifsonly if it is monotone (iff $\forall x \in X \cdot f(1) \subseteq f(x)$)

Binary product of cpo's and domains

The product of two cpo's $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \& d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\begin{gathered}
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \& d_{2} \sqsubseteq_{2} d_{2}^{\prime} . \\
\frac{\left(x_{1}, x_{2}\right) \sqsubseteq\left(y_{1}, y_{2}\right)}{x_{1} \sqsubseteq_{1} y_{1} \quad x_{2} \sqsubseteq_{2} y_{2}}
\end{gathered}
$$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

Chain in $D_{1} \times D_{2}$

$$
\left(d_{1,1}, d_{2,1}\right) \subseteq\left(d_{1,2}, d_{2,2}\right) \subseteq\left(d_{1,3}, d_{2}, 3\right) \subseteq \ldots
$$

get $\left\{\begin{array}{l}d_{1,1} \subseteq d_{1,2} \subseteq d_{1,3} \subseteq \ldots \text { chain in } D_{1} \\ d_{2,1} \subseteq d_{2,2} \subseteq d_{2,3} \subseteq \ldots \text { chain in } D_{2}\end{array}\right.$

Chain in $D_{1} \times D_{2}$

$$
\begin{aligned}
& \left(d_{1,1,} d_{2,1}\right) \subseteq\left(d_{1,2}, d_{2,2}\right) \subseteq\left(d_{1,3}, d_{2,3}\right) \subseteq \cdots \\
& \quad \text { get }\left\{\begin{array}{l}
d_{1,1} \subseteq d_{1,2} \subseteq d_{1,3} \subseteq \cdots \text { chain in } D_{1} \\
d_{2,1} \subseteq d_{2,2} \subseteq d_{2,3} \subseteq \cdots \text { chain in } D_{2}
\end{array}\right.
\end{aligned}
$$

So we can form $\begin{cases}L_{i \geqslant 0} d_{1, i} & \text { lub in } D_{1} \\ L_{j \geqslant 0} d_{21 j} & \text { lub in } D_{2}\end{cases}$
if chain in $D_{1} \times D_{2}$ has an upper bound $\left(d_{1,1}, d_{2,1}\right) \subseteq\left(d_{1,2}, d_{2,2}\right) \subseteq\left(d_{1,3}, d_{2}, 3\right) \subseteq \cdots \subseteq\left(x_{1}, x_{2}\right)$
then get $\begin{cases}d_{1,1} \subseteq d_{1,2} \subseteq d_{1,3} \subseteq \cdots \subseteq x_{1} & D_{1} \\ d_{2,1} \subseteq d_{2,2} \subseteq d_{2,3} \subseteq \cdots \subseteq x_{2} & D_{2}\end{cases}$
hence $\quad\left\{\begin{array}{ll}U_{i \geqslant 0} d_{11 i} & \sqsubseteq x_{1} \\ D_{1} \\ U_{j \geqslant 0} d_{21 j} & \sqsubseteq x_{2}\end{array} \quad D_{2}\right.$
and thus $\left(U_{i \geqslant 0} d_{1, i}, \bigsqcup_{j \geqslant 0} d_{2}, j\right) \subseteq\left(x_{1}, x_{2}\right)$ in $D_{1} \times D_{2}$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ are domains so is $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ and $\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)$.
for all $\left(d_{1}, d_{2}\right) \in D_{1} \times D_{2}$

$$
\left.\begin{array}{r}
\perp_{D_{1}} \subseteq d_{1} \quad \text { in } D_{1} \\
\perp_{D_{2}} \sqsubseteq d_{2} \quad \text { in } D_{2}
\end{array}\right\} s o\left(\perp_{1} \perp\right) \subseteq\left(d_{1}, d_{2}\right)
$$

Continuous functions of two arguments

Proposition. Let D, E, F be cpo's. A function
$f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$
\begin{aligned}
f\left(\bigsqcup_{m \geq 0} d_{m}, e\right) & =\bigsqcup_{m \geq 0} f\left(d_{m}, e\right) \\
f\left(d, \bigsqcup_{n \geq 0} e_{n}\right) & =\bigsqcup_{n \geq 0} f\left(d, e_{n}\right)
\end{aligned}
$$

If we just know $\left\{\begin{array}{l}\text { for all } d, d^{\prime}, e, e^{\prime}: \\ d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \\ e \subseteq e^{\prime} \Rightarrow f(d, e) \subseteq f\left(d, e^{\prime}\right)\end{array}\right.$ then we get $f: D \times E \rightarrow F$ is monotone:

If we just know $\left\{\begin{array}{l}\text { for all } d, d^{\prime}, e, e^{\prime}: \\ d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \\ e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \subseteq f\left(d, e^{\prime}\right)\end{array}\right.$ then we get $f: D \times E \rightarrow F$ is monotone:

$$
\begin{aligned}
(d, e) \subseteq\left(d^{\prime}, e^{\prime}\right) & \Rightarrow d \sqsubseteq d^{\prime} \& e \subseteq e^{\prime} \\
& \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \& e \subseteq e^{\prime} \\
& \Rightarrow " \quad " \quad f\left(d^{\prime}, e\right) \subseteq f\left(d^{\prime}, e^{\prime}\right) \\
& \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e^{\prime}\right)
\end{aligned}
$$

If we just know $\left\{\begin{array}{l}\text { for all } d, d^{\prime}, e, e^{\prime}: \\ d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \\ e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \subseteq f\left(d, e^{\prime}\right)\end{array}\right.$ then we get $f: D \times E \rightarrow F$ is monotone:

$$
\begin{aligned}
(d, e) \subseteq\left(d^{\prime}, e^{\prime}\right) & \Rightarrow d \sqsubseteq d^{\prime} \& e \subseteq e^{\prime} \\
& \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \& e \subseteq e^{\prime} \\
& \Rightarrow " \quad " \quad f\left(d^{\prime}, e\right) \subseteq f\left(d^{\prime}, e^{\prime}\right) \\
& \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e^{\prime}\right)
\end{aligned}
$$

If we just know $\left\{\begin{array}{l}\text { for all } d, d^{\prime}, e, e^{\prime}: \\ d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \\ e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right)\end{array}\right.$ then we get $f: D \times E \rightarrow F$ is monotone:

$$
\begin{aligned}
(d, e) \subseteq\left(d^{\prime}, e^{\prime}\right) & \Rightarrow d \sqsubseteq d^{\prime} \& e \subseteq e^{\prime} \\
& \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e\right) \& e \subseteq e^{\prime} \\
& \Rightarrow " \quad " \quad f\left(d^{\prime}, e\right) \subseteq f\left(d^{\prime}, e^{\prime}\right) \\
& \Rightarrow f(d, e) \subseteq f\left(d^{\prime}, e^{\prime}\right)
\end{aligned}
$$

$\begin{aligned} & \text { If we just know } \\ & \text { monotonicity }\end{aligned}+\left\{\begin{array}{l}f\left(U_{m \geqslant 0} d_{m}, e\right) \subseteq U_{m \geqslant 0} f\left(d_{m}, e\right) \\ f\left(d, U_{n \geqslant 0} e_{n}\right) \sqsubseteq U_{n \geqslant 0} f\left(d, e_{n}\right)\end{array}\right.$ then we get that $f: D \times E \rightarrow E$ is continuous:
$\begin{aligned} & \text { If we just know } \\ & \text { monotonicity }\end{aligned}+\left\{\begin{array}{l}f\left(U_{m \geqslant 0} d_{m}, e\right)=U_{m \geqslant 0} f\left(d_{m}, e\right) \\ f\left(d, U_{n \geqslant 0} e_{n}\right)=U_{n \geqslant 0} f\left(d, e_{n}\right)\end{array}\right.$ then we get that $f: D \times E \rightarrow E$ is continuous: $f\left(\cup_{n \geqslant 0}\left(d_{n}, e_{n}\right)\right)=f\left(U_{i \geqslant 0} d_{i}, \cup_{j \geqslant 0} e_{j}\right)$
$\begin{aligned} & \text { If we just know } \\ & \text { monotonicity }\end{aligned}+\left\{\begin{array}{l}f\left(\bigsqcup_{m \geqslant 0} d_{m}, e\right)=U_{m \geqslant 0} f\left(d_{m}, e\right) \\ f\left(d, \bigsqcup_{n \geq 0} e_{n}\right)=U_{n \geqslant 0} f\left(d, e_{n}\right)\end{array}\right.$ then we get that $f: D \times E \rightarrow E$ is continuous:

$$
\begin{aligned}
f\left(U_{n \geqslant 0}\left(d_{n}, e_{n}\right)\right) & =f\left(U_{i \geqslant 0} d_{i}, e\right) \quad e \quad \text { where } \\
& =\bigcup_{i, 0} f\left(d_{i}, e\right)
\end{aligned}
$$

If we just know
monotonicity $\left\{\begin{array}{l}f\left(U_{m \geqslant 0} d_{m}, e\right)=U_{m \geqslant 0} f\left(d_{m}, e\right) \\ f\left(d, U_{n \geqslant 0} e_{n}\right)=U_{n \geqslant 0} f\left(d, e_{n}\right)\end{array}\right.$ then we get that $f: D \times E \rightarrow E$ is continuous:

$$
\begin{aligned}
f\left(U_{n \geqslant 0}\left(d_{n}, e_{n}\right)\right) & =f\left(U_{i \geqslant 2} d_{i}, \sqcup_{j \geqslant 0} e_{j}\right) \\
& =U_{i \geqslant 0} f\left(d_{i}, \sqcup_{j \geqslant 0} e_{j}\right) \\
& =\bigcup_{i \geqslant 0}\left(U_{j \geqslant 0} f\left(d_{i}, e_{j}\right)\right)
\end{aligned}
$$

If we just know
monotonicity $\left\{\begin{array}{l}f\left(U_{m \geqslant 0} d_{m}, e\right)=U_{m \geqslant 0} f\left(d_{m}, e\right) \\ f\left(d, U_{n \geqslant 0} e_{n}\right)=U_{n \geqslant 0} f\left(d, e_{n}\right)\end{array}\right.$ then we get that $f: D \times E \rightarrow E$ is continuous:

$$
\begin{aligned}
f\left(U_{n \geqslant 0}\left(d_{n}, e_{n}\right)\right) & =f\left(U_{i \geqslant 0} d_{i}, \cup_{j \geqslant 0} e_{j}\right) \\
& =U_{i, 0} f\left(d_{i}, U_{j \geqslant 0} e_{j}\right) \\
& =U_{i \geqslant 0}\left(U_{j \geqslant 0} f\left(d_{i}, e_{j}\right)\right)
\end{aligned}
$$

Ser ide $27=L_{k \geqslant 0} f\left(d_{k}, e_{k}\right)$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \& n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \cdots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 3} \sqsubseteq \ldots
$$

Moreover

$$
\bigsqcup_{m \geq 0}\left(\bigsqcup_{n \geq 0} d_{m, n}\right)=\bigsqcup_{k \geq 0} d_{k, k}=\bigsqcup_{n \geq 0}\left(\bigsqcup_{m \geq 0} d_{m, n}\right)
$$

Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo ($D \rightarrow E$, \sqsubseteq) has underlying set
$(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E$ is a continuous function $\}$ and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$.

Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo ($D \rightarrow E$, \sqsubseteq) has underlying set
$(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E$ is a continuous function $\}$ and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$.

- A derived rule:

$$
\frac{f \sqsubseteq_{(D \rightarrow E)} g \quad x \sqsubseteq_{D} y}{f(x) \sqsubseteq g(y)}
$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

If E is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d)=\perp_{E}$, all $d \in D$.

Given $f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \cdots$ in $D \rightarrow E$ for each $d \in D$ we get

$$
f_{0}(d) \subseteq f_{1}(d) \subseteq f_{2}(d) \subseteq \cdots \quad \text { chain in } E
$$

and can form its lib $L_{n \geqslant 0} f_{n}(d)$.

Given $f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \cdots$ in $D \rightarrow E$ for each $d \in D$ we get

$$
f_{0}(d) \subseteq f_{1}(d) \subseteq f_{2}(d) \subseteq \cdots \quad \text { chain in } E
$$

and can form its lib $\cup_{n \geqslant 0} f_{n}(d)$.
$\lambda d \in D . U_{n \geqslant 0} f_{n}(d)$ is monotone, because:

$$
\begin{aligned}
d \subseteq d^{\prime} & \Rightarrow \forall n \geqslant 0 . f_{n} d \subseteq f_{n} d^{\prime} \\
& \Rightarrow \cup_{n \geqslant 0} f_{n} d \sqsubseteq \cup_{n \geqslant 0} f_{n} d^{\prime}
\end{aligned}
$$

Given $f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \cdots$ in $D \rightarrow E$ for each $d \in D$ we get

$$
f_{0}(d) \subseteq f_{1}(d) \subseteq f_{2}(d) \subseteq \cdots \quad \text { chain in } E
$$

and can form its lib $\cup_{n \geqslant 0} f_{n}(d)$.
$\lambda d \in D . U_{n \geqslant 0} f_{n}(d)$ is continuous, because:

$$
\begin{aligned}
U_{n \geqslant 0} f_{n}\left(U_{m \geqslant 0} d_{m}\right) & =U_{n \geqslant 0}\left(U_{m \geqslant 0} f_{n}\left(d_{m}\right)\right) & \begin{array}{l}
\text { each } f_{n} \\
\text { is continuous }
\end{array} \\
& =\bigsqcup_{k \geqslant 0} f_{k}\left(d_{k}\right) & \text { slide 27 } \\
& =U_{m \geqslant 0}\left(U_{n \geqslant 0} f_{n}\left(d_{m}\right)\right) & \text { slide 27 }
\end{aligned}
$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$
\bigsqcup_{n \geq 0} f_{n}=\lambda d \in D \cdot \bigsqcup_{n \geq 0} f_{n}(d)
$$

- A derived rule:

$$
\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right)=\bigsqcup_{k} f_{k}\left(x_{k}\right)
$$

If E is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d)=\perp_{E}$, all $d \in D$.
$(\lambda d \cdot \perp) \sqsubseteq f$ because $\forall d .(\lambda d . \perp)(d)=\perp \sqsubseteq f(d)$

Continuity of composition

For cpo's D, E, F, the composition function

$$
\circ:((E \rightarrow F) \times(D \rightarrow E)) \longrightarrow(D \rightarrow F)
$$

defined by setting, for all $f \in(D \rightarrow E)$ and $g \in(E \rightarrow F)$,

$$
g \circ f=\lambda d \in D \cdot g(f(d))
$$

is continuous.

Evaluation function $\mathrm{ev}:(D \rightarrow E) \times D \rightarrow E$

$$
e v(f, d)=f(d)
$$

Monstone: if $f \subseteq f^{\prime}$ and $d \subseteq d^{\prime}$, then

$$
\begin{aligned}
& \operatorname{ev}(f, d)=f(d) \sqsubseteq f\left(d^{\prime}\right) \\
& f \text { is monotore } \\
& \sqsubseteq f^{\prime}\left(d^{\prime}\right) \\
&=\operatorname{ev}\left(f^{\prime}, d^{\prime}\right)
\end{aligned}
$$

detinition of f:f'

Evaluation function Rv: $(D \rightarrow E) \times D \rightarrow E$

$$
\operatorname{ev}(f, d)=f(d)
$$

Continuous: if $\left\{\begin{array}{l}f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots \\ d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \ldots\end{array}\right.$ in $D \rightarrow E$ in D then

$$
\begin{aligned}
& \operatorname{ev}\left(U_{n \geqslant 0}\left(f_{n}, d_{n}\right)\right)_{\rightarrow}=\operatorname{ev}\left(U_{i \geqslant 0} f_{i}, U_{j \geqslant 0} d_{j}\right) \\
& (D \rightarrow E) \times D
\end{aligned}
$$

Evaluation function Cv: $(D \rightarrow E) \times D \rightarrow E$

$$
\operatorname{ev}(f, d)=f(d)
$$

Continuous: if $\left\{\begin{array}{l}f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots \\ d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \ldots\end{array}\right.$ in $D \rightarrow E$ in D then

$$
\begin{aligned}
& \operatorname{ev}\left(U_{n \geqslant 0}\left(f_{n}, d_{n}\right)\right)=\operatorname{ev}\left(\sqcup_{i, 0} f_{i}, U_{i \geqslant 0} d_{j}\right) \\
& \text { def of er }
\end{aligned}
$$

Evaluation function Rv: $(D \rightarrow E) \times D \rightarrow E$

$$
e v(f, d)=f(d)
$$

Continuous: if $\left\{\begin{array}{l}f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots \\ d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \ldots\end{array}\right.$ in $D \rightarrow E$ in D then

$$
\begin{aligned}
\operatorname{ev}\left(U_{n \geqslant 0}\left(f_{n}, d_{n}\right)\right) & =\operatorname{er}\left(\cup_{i, 2} f_{i}, U_{j \geqslant 2} d_{j}\right) \\
& =\left(\cup_{i z} f_{i}\right)\left(\sqcup_{j \geqslant 0} d_{j}\right) \\
\longrightarrow & =\sqcup_{i \geqslant 0} f_{i}\left(\sqcup_{j \geqslant 0} d_{j}\right)
\end{aligned}
$$

Evaluation function Rv: $(D \rightarrow E) \times D \rightarrow E$

$$
\operatorname{ev}(f, d)=f(d)
$$

Continuous: if $\left\{\begin{array}{l}f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots \\ d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \ldots\end{array}\right.$ in $D \rightarrow E$ in D then

$$
\begin{aligned}
\operatorname{ev}\left(U_{n \geqslant 0}\left(f_{n}, d_{n}\right)\right) & =\operatorname{ev}\left(\sqcup_{i \geqslant 0} f_{i}, U_{i \geqslant 0} d_{j}\right) \\
& =\left(\sqcup_{i \geqslant}, f_{i}\right)\left(\sqcup_{j \geqslant 0} d_{j}\right) \\
& =\bigsqcup_{i \geqslant 0} f_{i}\left(\sqcup_{j \geqslant 0} d_{j}\right) \\
& =\bigsqcup_{i \geqslant 0} \sqcup_{j \geqslant 0} f_{i}\left(d_{j}\right)
\end{aligned}
$$

each f_{i} is os

Evaluation function $\mathrm{ev}:(D \rightarrow E) \times D \rightarrow E$

$$
\operatorname{ev}(f, d)=f(d)
$$

Continuous: if $\left\{\begin{array}{l}f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots \\ d_{0} \subseteq d_{1} \subseteq d_{2} \subseteq \ldots\end{array}\right.$ in $D \rightarrow E$ in D then

$$
\begin{aligned}
& \operatorname{ev}\left(U_{n \geqslant 0}\left(f_{n}, d_{n}\right)\right)=\operatorname{er}\left(U_{i \geqslant 0} f_{i}, U_{j \geqslant 0} d_{j}\right) \\
& =\left(\sqcup_{i z}, f_{i}\right)\left(\sqcup_{j \geqslant 0} d_{j}\right) \\
& =\bigsqcup_{i \geqslant 0} f_{i}\left(\bigsqcup_{j \geqslant 0} d_{j}\right) \\
& =\bigsqcup_{i \geqslant 0} \sqcup_{i \geqslant 0} f_{i}\left(d_{j}\right) \\
& \text { Slide } 27 \longrightarrow=\sqcup_{k \geqslant 0} f_{k}\left(d_{k}\right)
\end{aligned}
$$

$\operatorname{def} \eta \nmid$ en $\longrightarrow=\cup_{k \geqslant 0} \operatorname{er}\left(f_{k, 1}, d_{k}\right)$
"Currying"
From continuous $f: D^{\prime} \times D \rightarrow E$ we get

$$
\operatorname{cur}(f)=\lambda d^{\prime} \in D, \lambda d \in D \cdot f\left(d^{\prime}, d\right)
$$

- for each $d^{\prime} \in D, \operatorname{cur}(f)\left(d^{\prime}\right) \in D \rightarrow E$ (ie. (s continuous)
"Currying"
From continuous $f: D^{\prime} \times D \rightarrow E$ we get

$$
\operatorname{cur}(f)=\lambda d^{\prime} \in D, \lambda d \in D . f\left(d^{\prime}, d\right)
$$

- for each $d^{\prime} \in D, \operatorname{cur}(f)\left(d^{\prime}\right) \in D \rightarrow E$ (ie. Is continuous)

$$
\begin{aligned}
\operatorname{cur}(f)\left(d^{\prime}\right)\left(U_{n \geqslant 0} d_{n}\right) & =f\left(d^{\prime}, U_{n \geqslant 0} d_{n}\right) \\
& =f\left(U_{n \geqslant 0}\left(d^{\prime}, d_{n}\right)\right) \\
& =\sqcup_{n \geq 0} f\left(d^{\prime}, d_{n}\right) \\
& = \pm_{n \geqslant 0} \operatorname{cur}(f)\left(d^{\prime}\right)\left(d_{n}\right)
\end{aligned}
$$

"Currying"
From continuous $f: D^{\prime} \times D \rightarrow E$ we get

$$
\operatorname{cur}(f)=\lambda d^{\prime} \in D, \lambda d \in D . f\left(d^{\prime}, d\right)
$$

- for each $d^{\prime} \in D, \operatorname{cur}(f)\left(d^{\prime}\right) \in D \rightarrow E$ (ie. Is continuous)
- $\operatorname{cur}(f) \in D^{\prime} \rightarrow(D \rightarrow E)$ (i.e. is continuous)
"Currying"
From continuous $f: D^{\prime} \times D \rightarrow E$ we get

$$
\operatorname{cur}(f)=\lambda d^{\prime} \in D, \lambda d \in D . f\left(d^{\prime}, d\right)
$$

- for each $d^{\prime} \in D, \operatorname{cur}(f)\left(d^{\prime}\right) \in D \rightarrow E$ (ie. Is continuous)
- $\operatorname{cur}(f) \in D^{\prime} \rightarrow(D \rightarrow E)$ (ie. is continuous)

$$
\begin{aligned}
\operatorname{cur}(f)\left(U_{m \geqslant 0} d_{m}^{\prime}\right)(d) & =f\left(U_{m \geqslant 0} d_{m}^{\prime}, d\right) \\
& =U_{m \geq 0} f\left(d_{m}^{\prime}, d\right) \\
& \left.=\left(\omega_{m \geq 0} \operatorname{curcf}\right)\left(d_{m}^{\prime}\right)\right)(d)
\end{aligned}
$$

Continuity of the fixpoint operator

Let D be a domain.
By Tarski's Fixed Point Theorem we know that each continuous function $f \in(D \rightarrow D)$ possesses a least fixed point, $f i x(f) \in D$.

Proposition. The function

$$
f i x:(D \rightarrow D) \rightarrow D
$$

is continuous.

Pre-fixed points

Let D be a poset and $f: D \rightarrow D$ be a function.
An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
f i x(f)
$$

It is thus (uniquely) specified by the two properties:

$$
\begin{align*}
& f(f i x(f)) \sqsubseteq f i x(f) \tag{lfp1}\\
& \forall d \in D . f(d) \sqsubseteq d \Rightarrow f i x(f) \sqsubseteq d \tag{lfp2}
\end{align*}
$$

$$
\text { fix }:(D \rightarrow D) \rightarrow D
$$

is monotone: if $f \subseteq f^{\prime}$ in $D \rightarrow D$, then

$$
f\left(f i x f^{\prime}\right) \sqsubseteq f^{\prime}\left(f i x f^{\prime}\right) \sqsubseteq f i x f^{\prime}
$$

$$
\text { fix }:(D \rightarrow D) \rightarrow D
$$

is monotone: if $f \subseteq f^{\prime}$ in $D \rightarrow D$, then

$$
f\left(f_{i x} f^{\prime}\right) \leqq f^{\prime}\left(f_{i x} f^{\prime}\right) \subseteq f_{i x} f^{\prime}
$$

so f ix f^{\prime} is a prefixed point of f
So by $(1 f p 2) \quad$ fix f $\subseteq f i x f^{\prime}$

$$
\text { fix }:(D \rightarrow D) \rightarrow D
$$

is continuous: given $f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots$ in $D \rightarrow D$ want to show $f_{i x}\left(\sqcup_{n z o} f_{n}\right) \subseteq U_{n=0} f_{i x}\left(f_{n}\right)$ By (Ifp2), enough to show

$$
\left(\sqcup_{n \geqslant 0} f_{n}\right)(d) \subseteq d \text { for } d=\bigsqcup_{n \geqslant 0} f_{i x}\left(f_{n}\right)
$$

$$
\text { fix }:(D \rightarrow D) \rightarrow D
$$

is continuous: given $f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots$ in $D \rightarrow D$ want to show $f_{i x}\left(U_{n 20} f_{n}\right) \subseteq U_{n=0} f_{i x}\left(f_{n}\right)$
By (Ifp2), enough to show

$$
\begin{aligned}
& \left(U_{n \geqslant 0} f_{n}\right)(d) \sqsubseteq d \text { for } d=\bigsqcup_{n \geqslant 0} \text { fix }\left(f_{n}\right) \\
& \text { But }\left(U_{n z o} f_{n}\right)(d)=\left(U_{n \geqslant 0} f_{n}\right)\left(U_{m \geqslant 0} \text { fix }\left(f_{m}\right)\right) \\
& =\cup_{n \geq 2} U_{m \geq 2} f_{n}\left(f_{i x}\left(f_{m}\right)\right) \\
& \begin{array}{l}
=\bigcup_{n \geq 0} U_{m \geq 0} f_{n}\left(f_{i x}\left(f_{m}\right)\right) \\
=\bigcup_{k \geqslant 0} f_{k}\left(f_{i x}\left(f_{k}\right)\right)
\end{array} \\
& \text { (lfpl)for } \\
& \text { each } f_{k} \\
& \begin{array}{l}
>\leq U_{k \geqslant r} f_{i x}\left(f_{k}\right)
\end{array}
\end{aligned}
$$

