
Cpo’s and domains

A chain complete poset, or cpo for short, is a poset (D,!) in
which all countable increasing chains d0 ! d1 ! d2 ! . . . have
least upper bounds,

⊔

n≥0 dn:

∀m ≥ 0 . dm !
⊔

n≥0

dn (lub1)

∀d ∈ D . (∀m ≥ 0 . dm ! d) ⇒
⊔

n≥0

dn ! d. (lub2)

A domain is a cpo that possesses a least element, ⊥:

∀d ∈ D .⊥ ! d.

32



Continuity and strictness

• IfD and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains
d0 ! d1 ! . . . inD, it is the case that

f(
⊔

n≥0

dn) =
⊔

n≥0

f(dn) in E.
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Continuity and strictness

• IfD and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains
d0 ! d1 ! . . . inD, it is the case that

f(
⊔

n≥0

dn) =
⊔

n≥0

f(dn) in E.

• IfD and E have least elements, then the function f is strict
iff f(⊥) = ⊥.
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Tarski’s Fixed Point Theorem

Let f : D →D be a continuous function on a domainD. Then

• f possesses a least pre-fixed point, given by

fix (f) =
⊔

n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies
f
(

fix (f)
)

= fix (f), and hence is the least fixed point of f .
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Pre-fixed points

LetD be a poset and f : D→D be a function.

An element d ∈ D is a pre-fixed point of f if it satisfies
f(d) # d.

The least pre-fixed point of f , if it exists, will be written

fix (f)

It is thus (uniquely) specified by the two properties:

f(fix (f)) # fix (f) (lfp1)

∀d ∈ D. f(d) # d ⇒ fix (f) # d. (lfp2)

28







































Fixed point property of
[[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State →{true, false} and

c : State ⇀ State , we define

fb,c : (State ⇀ State) → (State ⇀ State)
as

fb,c = λw ∈ (State ⇀ State). λs ∈ State.

if
(
b(s), w(c(s)), s

)
.

• Why does w = f[[B]],[[C]](w) have a solution?

• What if it has several solutions—which one do we take to be

[[while B do C]]?
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[[while B do C]]

[[while B do C]]

= fix (f[[B]],[[C]])

=
⊔

n≥0 f[[B]],[[C]]
n(⊥)

= λs ∈ State.










[[C]]k(s) if k ≥ 0 is such that [[B]]([[C]]k(s)) = false

and [[B]]([[C]]i(s)) = true for all 0 ≤ i < k

undefined if [[B]]([[C]]i(s)) = true for all i ≥ 0
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