Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_{n}$:

$$
\begin{align*}
& \forall m \geq 0 . d_{m} \sqsubseteq \bigsqcup_{n \geq 0} d_{n} \tag{lub1}\\
& \forall d \in D .\left(\forall m \geq 0 . d_{m} \sqsubseteq d\right) \Rightarrow \bigsqcup_{n \geq 0} d_{n} \sqsubseteq d .
\end{align*}
$$

A domain is a cpo that possesses a least element, \perp :

$$
\forall d \in D . \perp \sqsubseteq d
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff

1. it is monotone, and
2. it preserves lubs of chains, i.e. for all chains
$d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E .
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous jiff

1. it is monotone, and
2. it preserves tubs of chains, ie. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right)^{\prime} \text { in } E
$$

$$
\begin{aligned}
& \text { NB } \\
& f\left(d_{0}\right) \subseteq f\left(d_{1}\right) \\
& \subseteq f\left(d_{2}\right) \\
& \subseteq \\
& \text { los } f \text { monotone }
\end{aligned}
$$

$N B$

$$
\begin{aligned}
d_{i} \leq U_{n \geq 0} d_{n} & \stackrel{\text { monotonicity }}{\Longrightarrow} \forall i \cdot f\left(d_{i}\right) \subseteq f\left(U_{n \geqslant 0} d_{n}\right) \\
& \Longrightarrow L_{i \geqslant 0} f\left(d_{i}\right) \subseteq f\left(U_{n \geq 0} d_{n}\right)
\end{aligned}
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous jiff

1. it is monotone, and
2. it preserves tubs of chains, ie. for all chains
$d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E
$$

$N B$

$$
\begin{aligned}
d_{i} & U_{n \geq 0} d_{n}
\end{aligned} \begin{aligned}
& \left.\begin{array}{l}
\text { monotonicity } \\
\Longrightarrow
\end{array} d_{i}\right) \subseteq f\left(U_{n \geqslant 0} d_{n}\right) \\
& L_{i \geq 0} f\left(d_{i}\right) \subseteq f\left(U_{n \geq 0} d_{n}\right)
\end{aligned}
$$

$$
\text { So given 1, for } 2 \text { just need } f\left(U_{n \geqslant 0} d_{n}\right) \sqsubseteq U_{n \geqslant 0} f\left(d_{n}\right)
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff

1. it is monotone, and
2. it preserves lubs of chains, i.e. for all chains
$d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E .
$$

- If D and E have least elements, then the function f is strict iff $f(\perp)=\perp$.

Tarski's Fixed Point Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

- f possesses a least pre-fixed point, given by

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

- Moreover, $f i x(f)$ is a fixed point of f, ie. satisfies $f(f i x(f))=f i x(f)$, and hence is the least fixed point of f.
where $\left\{\begin{aligned} f^{0}(\perp) & \triangleq \perp \\ f^{n+1}(\perp) & \triangleq f\left(f^{n}(\perp)\right)\end{aligned}\right.$

Pre-fixed points

Let D be a poset and $f: D \rightarrow D$ be a function.
An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
f i x(f)
$$

It is thus (uniquely) specified by the two properties:

$$
\begin{align*}
& f(f i x(f)) \sqsubseteq f i x(f) \tag{lfp1}\\
& \forall d \in D . f(d) \sqsubseteq d \Rightarrow f i x(f) \sqsubseteq d \tag{lfp2}
\end{align*}
$$

Proof of Tarski's Theorem
$\perp \subseteq f(\perp)$ because \perp is least eft of D

Proof of Tarski's Theorem
$\perp \subseteq f(\perp)$ because \perp is least eft of D
so $f(\perp) \sqsubseteq f(f(\perp)) \triangleq f^{2}(\perp)$ by monotonicity of f So $f^{2}(\perp) \subseteq f\left(f^{2}(\perp)\right)=f^{3}(\perp)$ etc.

Proof of Tarski's Theorem
$\perp \subseteq f(\perp)$ because \perp is least eft of D
so $f(\perp) \sqsubseteq f(f(\perp)) \triangleq f^{2}(\perp)$ by monotonicity of f
So $f^{2}(\perp) \subseteq f\left(f^{2}(\perp)\right)=f^{3}(\perp)$
etc.
We get a chain $\perp \subseteq f(\downarrow) \sqsubseteq f^{2}(\downarrow) \sqsubseteq f^{3}(\downarrow) \sqsubseteq \cdots$ and can form its lube $L_{n \geqslant 0} f^{n}(\perp)$

Proof of Tarski's Theorem
Applying f to $\perp \subseteq f(\perp) \subseteq f^{2}(\perp) \subseteq \cdots \subseteq \sqcup_{n \geqslant 0} f^{n}(\perp)$
we get $\underbrace{f(1) \subseteq f(f(\lambda)) \subseteq f\left(f^{2}(\perp)\right) \subseteq \ldots \sqsubseteq f\left(L_{n \geqslant 0} f^{n}(\perp)\right)}_{\text {by monotonicity of } f}$

Proof of Tarski's Theorem
Applying f to $\perp \subseteq f(\perp) \subseteq f^{2}(\perp) \subseteq \cdots \subseteq ป_{n \geqslant 0} f^{n}(1)$
we get $\quad f(\perp) \subseteq f(f(\Lambda)) \subseteq f\left(f^{2}(\perp)\right) \subseteq \ldots \sqsubseteq f\left(L_{n \geqslant 0} f^{n}(\perp)\right)$
by continuity of $f \longrightarrow \|$

$$
\begin{aligned}
& U_{n \geqslant 0} f^{n+1}(\perp) \\
& U_{m \geqslant 1}^{\prime \prime} f^{m}(\perp)
\end{aligned}
$$

Proof of Tarski's Theorem

Proof of Tarski's Theorem
For any pre-fixed point $f(d) \subseteq d$ we have $\perp \subseteq d$ because \perp is least et of D

Proof of Tarski's Theorem
For any pre-fixed point $f(d) \subseteq d$ we have $\perp \subseteq d$ because \perp is least et t of D so $f(\perp) \subseteq f(d) \subseteq d \quad$ monotonicity +)

Proof of Tarski's Theorem
For any pre-fixed point $f(d) \subseteq d$ we have $\perp \subseteq d$ because \perp is least elf of D
so $\quad f(\perp) \subseteq f(d) \subseteq d \quad$ monotonicity +) So $f^{2}(\perp)=f(f(\perp)) \sqsubseteq f(d) \sqsubseteq d$ etc.

Proof of Tarski's Theorem
For any prefixed point $f(d) \subseteq d$ we have $\perp \subseteq d$ because \perp is least eff of D
so $f(\perp) \subseteq f(d) \subseteq d \quad$ monotmicity +)
So $f^{2}(\perp)=f(f(\perp)) \sqsubseteq f(d) \sqsubseteq d$ etc.
We get $f^{n}(\perp) \subseteq d$ for all $n \geq 0$ So $U_{n \geqslant 0} f^{n}(\downarrow) \subseteq d$

Proof of Tarski's Theorem For any prefixed point $f(d) \subseteq d$ we have

So $\bigcup_{n \geqslant 0} f^{n}(\perp)$ is a least prefixed point

We get

$$
U_{n \geqslant 0} f^{n}(1) \subseteq d
$$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

$S \in D$ is a pre-fixed point of f if

$$
f(s) \subseteq s
$$

ie. $0 \in S$ \& $x+2 \in S$ for all $x \in S$
ie. S is closed under the mes $\frac{}{0 \in S} \& \frac{x \in S}{x+2 \in S}$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

$S \in D$ is a pre-fixed point of f if

$$
f(s) \subseteq s
$$

ie. $\quad 0 \in S$ \& $x+2 \in S$ for all $x \in S$
ie. S is closed under the mes $\frac{}{0 \in S} \& \frac{x \in S}{x+2 \in S}$
So expect least profixeel point of f to be Even $=\{2 x \mid x e n\}$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

f is montane: $s \leq s^{\prime} \Rightarrow f(s) \subseteq f\left(s^{\prime}\right) \quad f$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

f is montane: $S \subseteq S^{\prime} \Rightarrow f(S) \subseteq f\left(S^{\prime}\right) \checkmark$
f is continuous: $f\left(U_{n \geqslant 0} S_{n}\right)=\{0\} \cup\left\{x+2 \mid x \in \bigcup_{n \geqslant 0} S_{n}\right\}$

$$
\begin{aligned}
& \left.=\{0\} \cup U_{n \geqslant 0}\{x+2) x \in S_{n}\right\} \\
& =\bigcup_{n \geqslant 0} f\left(S_{n}\right) \quad \sqrt{ }
\end{aligned}
$$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

Tarski Theorem applies:

$$
\begin{aligned}
& f i x(f)=U_{n \geqslant 0} f^{n}(\phi) \\
& f(\phi)=\{0\} \\
& f^{2}(\phi)=\{0\} \cup\{0+2\} \\
& f^{3}(\phi)=\{0,2,4\} \\
& f^{n}(\phi)=\{0,2,4, \ldots 2(n-1)\}
\end{aligned}
$$

Example
Domain $D=(P(\mathbb{N}), \subseteq) \quad($ same as $\mathbb{N} \rightarrow 1)$ Function $f: D \rightarrow D$

$$
f(S) \triangleq\{0\} \cup\{x+2 \mid x \in S\}
$$

Tarski Theorem applies:

$$
\begin{array}{rlr}
f \text { fix }(f)=U_{n \geqslant 0} f^{n}(\phi)= & \{0,2,4,8, \ldots\} \\
& =\{2 x \mid x \in \mathbb{N}\} \\
f(\phi)=\{0\} & \quad \text { (as expected). } \\
f^{\prime}(\phi)=\{0\} \cup\{0+2\} & \\
f^{3}(\phi)=\{0,2,4\} & \\
f^{n}(\phi)=\{0,2,4, \ldots 2(n-1)\}
\end{array}
$$

Fixed point property of

 \llbracket while B do $C \rrbracket$
\llbracket while B do $C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket$ while B do $C \rrbracket)$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and we now know this $c: S t a t e \rightharpoonup$ State, we define

$$
f_{b, c}:(\text { State } \rightharpoonup \text { State }) \rightarrow(\text { State } \rightharpoonup \text { State })
$$

$$
f_{b, c}=\lambda w \in(\text { State } \rightharpoonup \text { State }) . \lambda s \in \text { State. }
$$

$$
\text { if }(b(s), w(c(s)), s)
$$

- Why does $w=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions-which one do we take to be \llbracket while B do $C \rrbracket$?

Fixed point property of

 \llbracket while B do $C \rrbracket$$$
\llbracket \text { while } B \text { do } C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \text { while } B \text { do } C \rrbracket)
$$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and
$c:$ State \rightharpoonup State, we define

$$
f_{b, c}:(\text { State } \rightharpoonup \text { State }) \rightarrow(\text { State } \rightharpoonup \text { State })
$$

$$
f_{b, c}=\lambda w \in(\text { State } \rightharpoonup \text { State }) . \lambda s \in \text { State. }
$$

$$
i f(b(s), w(c(s)), s)
$$

- Why does $w=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution? (need to show $f_{b, c}$
is continuous
- What if it has several solutions-which one do we take to be \llbracket while B do $C \rrbracket ? \approx$ least (pre-) fixed point

Continuity of $f_{b, c}$
Suppose $c_{0} \leqslant c_{1} \leqslant c_{2} \leqslant \cdots$ in State \rightarrow State

$$
f_{b, c}\left(U_{n \geq 1}, c_{n}\right)=\lambda s \in \text { State. if }\left(b(s),\left(U_{n \geq 0} c_{n}\right)(c(s)), s\right)
$$ that is

$$
f_{b_{1} c}\left(U_{n \geq 0} c_{n}\right)=\left\{\begin{array}{l|l}
\left(s, s^{\prime}\right) \left\lvert\, \begin{array}{l}
b(s)=\text { the } \cap \\
\exists s^{\prime \prime} . \\
\left(U_{n \geqslant 0}(s)=s^{\prime \prime} \wedge\right)\left(s^{\prime \prime}\right)=s^{\prime} \\
v^{\prime} \\
b(s)=\text { false } \wedge s=s^{\prime}
\end{array}\right.
\end{array}\right\}
$$

Continuity of $f_{b, c}$
Suppose $c_{0} \subseteq c_{1} \subseteq c_{2} \subseteq \cdots$ in State \rightarrow State

$$
f_{b, c}\left(U_{n \geqslant 0} c_{n}\right)=\lambda s \in \text { State. if }\left(b(s),\left(U_{n \geqslant 0} c_{n}\right)(c(s)), s\right)
$$ that is

Continuity of $f_{b, c}$
Suppose $c_{0} \subseteq c_{1} \subseteq c_{2} \subseteq \cdots$ in State \rightarrow State

$$
f_{b, c}\left(U_{n \geqslant 0} c_{n}\right)=\lambda s \in \text { State. if }\left(b(s),\left(U_{n \geqslant 0} c_{n}\right)(c(s)), s\right)
$$ that is

$$
f_{b_{1} c}\left(U_{n \geq 0} c_{n}\right)=\left\{\left(s, s^{\prime}\right) \left\lvert\, \begin{array}{c}
\exists n \geqslant 0 . b(s)=\text { the } \wedge \exists s^{\prime \prime} \cdot C(s)=s^{\prime \prime} \wedge \\
c_{n}\left(s^{\prime \prime}\right)=s^{\prime} \\
v_{b(s)=\text { false } \wedge s=s^{\prime}}
\end{array}\right.\right\}
$$

Continuity of $f_{b, c}$
Suppose $c_{0} \leqslant c_{1} \leqslant c_{2} \leqslant \cdots$ in State \rightarrow State

$$
f_{b, c}\left(U_{n \geq 1}, c_{n}\right)=\lambda s \in \text { State. if }\left(b(s),\left(U_{n \geq 0} c_{n}\right)(c(s)), s\right)
$$ that is

$$
\begin{aligned}
& f_{b, c}\left(U_{n \geqslant 0} c_{n}\right)=\left\{\begin{array}{c}
\left(s, s^{\prime}\right) \left\lvert\, \begin{array}{c}
\exists n \geqslant 0 . b(s)=\text { awe } \cap \exists s^{\prime \prime}(c s)=s s^{\prime \prime} \wedge \\
c_{n}\left(s^{\prime \prime}\right)=s^{\prime} \\
v \\
b(s)=\text { false } \wedge s=s^{\prime}
\end{array}\right.
\end{array}\right\} \\
& \left.=\bigcup_{n \geqslant 0}\left\{\left(s, s^{\prime}\right) \mid i f\left(b(s), q_{n}(c s)\right), s\right)=s^{\prime}\right\} \\
& =U_{n \geqslant 0} f_{b, c}\left(c_{n}\right) \\
& Q \in D
\end{aligned}
$$

\llbracket while B do $C \rrbracket$

\llbracket while B do $C \rrbracket$

$=$ fix $\left(f_{\llbracket B \rrbracket, \llbracket C \rrbracket}\right) \quad$ Tarski Theorem
$\stackrel{=}{\bigsqcup_{n \geq 0}} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}{ }^{n}(\perp)$
$\stackrel{=}{=} \lambda s \in$ State.
$\llbracket C \rrbracket^{k}(s) \quad$ if $k \geq 0$ is such that $\llbracket B \rrbracket\left(\llbracket C \rrbracket^{k}(s)\right)=$ false and $\llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=$ true for all $0 \leq i<k$
undefined if $\llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=$ true for all $i \geq 0$

