Relating Denotational & Operational Semantics

[p79 et seq.]

- PCF types $\tau \mapsto$ domains $[\tau]$.
- Closed PCF terms $M : \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

In particular: $\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$.

• Soundness.

For any type τ , $M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

• Adequacy.

For $\tau = bool \text{ or } nat$, $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Proof.

$$\mathcal{C}[M_1] \Downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket \quad \text{(soundness)}$$

$$\Rightarrow \llbracket \mathcal{C}[M_2] \rrbracket = \llbracket V \rrbracket$$

(compositionality on $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$)

$$\Rightarrow \mathcal{C}[M_2] \Downarrow_{nat} V \quad (adequacy)$$

and symmetrically (& similarly for \varUpsilon_{loool}).

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M : \tau$ and $\Gamma \vdash M' : \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma' \vdash \mathcal{C}[M] : \tau'$ and $\Gamma' \vdash \mathcal{C}[M'] : \tau'$,

$$if \ \llbracket \Gamma \vdash M \rrbracket = \llbracket \Gamma \vdash M' \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$
$$then \ \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket = \llbracket \Gamma' \vdash \mathcal{C}[M'] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket$$

E.g. if $\{ [M_{z}] = [M_{z}'] \in [T \rightarrow T'] \}$ then $[M, M_2] = evo([M,], [M_2])$ = evo ([M]], [M]) $= \left[M' M' \right]$

Soundness

Proposition. For all closed terms $M, V \in \text{PCF}_{\tau}$,

5

 \frown

if $M \Downarrow_{\tau} V$ then $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket$.

Induction step for
$$(V_{fix}) = \frac{M fix(M) V_{\tau} V}{fix(M) V_{\tau} V}$$

Have to show: $[M fix(M)] = [V] \Rightarrow [fix(M)] = [V]$

Induction step for
$$(\Psi_{fix}) \xrightarrow{M fix(M) \Psi_{\tau} \vee} fix(M) \Psi_{\tau} \vee$$

Have to show: $[M fix(M)] = [V] \Rightarrow [fix(M)] = [V]$
But $[M fix(M)] = [M] ([fix M])$
by definition $\Rightarrow = [M] (fix([M]))$

Induction step for
$$(\Psi_{fix}) \frac{M fix(M) \Psi_{z} \vee}{fix(M) \Psi_{z} \vee}$$

there to show: $[M fix(M)] = [V] \Rightarrow [fix(M)] = [V]$
But $[M fix(M)] = [M] ([fix M])$
by definition $\Rightarrow = [M] (fix([M]))$
of E-D $\Rightarrow = fix([M])$
fix(f) is a fixed point of f

Induction step for
$$(\Psi_{fix}) \xrightarrow{M fix(M) \Psi_{t} \vee} fix(M) \Psi_{t} \vee$$

Have to show: $[M fix(M)] = [V] \Rightarrow [fix(M)] = [V]$
But $[M fix(M)] = [M] ([fix M])$
by definition $= [M] (fix ([M]))$
of [J] $= fix ([M])$
fix(f) is a $= [fix(M)]$
 $fix(f)$ is a $= [fix(M)]$

Induction step for
$$(U_{chn})$$
 $\frac{M_1 V_{2,z}}{M_1 M_2, z} M_{z} V_{z}, V}{M_1 M_2 V_z, V}$

Suppose
$$\int [M_1] = [fnx:\tau.M]$$

 $\int [M_1[M_2]x] = [V]$
Have to prove $[M_1M_2] = [V]$

Induction step for
$$(U_{chr})$$
 $\frac{M_1 U_{2,27}}{M_1 M_2, 2} \frac{M_2 U_2, V}{M_1 M_2 U_2, V}$

Suppose
$$[M_1] = [M_2:\tau, M]$$

 $[M_1M_2] = [M_2] = [V]$
Have to prove $[M_1M_2] = [V]$.
But $[M_1M_2] = [M_1]([M_2])$
by definition
 $f = J$

Induction step for
$$(U_{chr})$$
 $\frac{M_1 U_{2,27} f_{1,27} t_{2,7} M_1}{M_1 M_2 U_2, V}$

Suppose
$$[M_1] = [fnx:\tau.M]$$

 $[M_1] = [fnx:\tau.M]$
 $[M_1] = [V]$
Have to prove $[M_1M_2] = [V]$.
But $[M_1M_2] = [M_1]([M_2])$
 $= [fnx:\tau.M]([M_2])$

Induction step for
$$(U_{chr}) \frac{M_1 U_{z \to z}}{M_2 M_2 M_2 M_2 V}$$

 $M_1 U_{z \to z} \frac{M_2 M_2 M_2 M_2 V}{M_1 M_2 M_2 V}$

Suppose
$$[[M_1] = [[fnx:\tau.M]]$$

 $[[M[M_2[a]]] = [[V]]$
Have to prove $[[M_1M_2]] = [[V]]$.
But $[[M_1M_2]] = [[M_1]([[M_2]])$
 $= [[fnx:\tau.M]([[M_2]])$
 $= [[fnx:\tau.M]([[M_2]])$

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. Then,

 $\begin{bmatrix} \Gamma \vdash M'[M/x] \end{bmatrix} (\rho) \qquad (\rho) \\ = \begin{bmatrix} \Gamma[x \mapsto \tau] \vdash M' \end{bmatrix} (\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket))$ for all $\rho \in \llbracket \Gamma \rrbracket$.

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. Then,

 $\begin{bmatrix} \Gamma \vdash M'[M/x] \end{bmatrix} (\rho) \qquad (\rho) \\ = \begin{bmatrix} \Gamma[x \mapsto \tau] \vdash M' \end{bmatrix} (\rho[x \mapsto [\Gamma \vdash M]])$ for all $\rho \in [\Gamma]$.

In particular when $\Gamma = \emptyset$, $\llbracket \{x \mapsto \tau\} \vdash M' \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket$ and $\llbracket M' \llbracket M/x \rrbracket \rrbracket = \llbracket \{x \mapsto \tau\} \vdash M' \rrbracket (\llbracket M \rrbracket)$

Induction step for
$$(U_{chr}) = \frac{M_1 V_{z + z'} f_{r + z' + z} M_1}{M_1 M_2 M_2 V_2}$$

Suppose
$$[[M_1] = [[M_2:T.M]]$$

 $[[M_1] = [[M_2:T.M]]$
Have to prove $[[M_1M_2] = [[V]]$.
But $[[M_1M_2]] = [[M_1]([[M_2]])$
 $= [[M_1:T.M]([[M_2]])$
 $= [[M_1:T.M]([[M_2]])$
 $= [[M_1M_2/x]]$

Induction step for
$$(V_{cbn})$$
 $\frac{M_1 V_{z_3 z_1} m_{z_1 z_2} V}{M_1 M_2 J U_{z_1} V}$
Suppose $\int [M_1] = [f_{M_2: \tau} M]$
 $\int [M_1 M_2 U_{z_1} V]$
Have to prove $[M_1 M_2] = [V]$
Have to prove $[M_1 M_2] = [V]$.
But $[M_1 M_2] = [M_1 J ([M_2]))$
 $= [f_{M_2: \tau} M] ([M_2])$
 $= [f_{M_2: \tau} M] ([M_2])$
 $= [M [M_2/2]] = [V]$ QED

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

NB. Adequacy does not hold at function types

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V .$$

NB. Adequacy does not hold at function types:

 $\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$ but

$$\mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \not \downarrow_{\tau \to \tau} \mathbf{fn} \ x : \tau. \ x$$

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

• Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

 $\llbracket M \rrbracket \lhd_{ au} M$ for all types au and all $M \in \mathrm{PCF}_{ au}$

where the formal approximation relations

$$\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}^{\boldsymbol{\varkappa}}$$

are *logically* chosen to allow a proof by induction.

- closed PCF terms of

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$$\llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \underbrace{\forall V \left(\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V \right)}_{\text{adequacy}}$$

 $\begin{array}{l} \text{Definition of } d \triangleleft_{\gamma} M \ (d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma}) \\ \text{for } \gamma \in \{nat, bool\} \end{array}$

$$n \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{n}(\mathbf{0}))$$

$$b \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$
$$\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$$

Proof of: $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies adequacy Case $\gamma = nat$. $\llbracket M \rrbracket = \llbracket V \rrbracket$ $\implies \llbracket M \rrbracket = \llbracket succ^{n}(\mathbf{0}) \rrbracket$ for some $n \in \mathbb{N}$ $\implies n = \llbracket M \rrbracket \triangleleft_{\gamma} M$ $\implies M \Downarrow succ^{n}(\mathbf{0})$ by definition of \triangleleft_{nat}

Case $\gamma = bool$ is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

• Consider the case $M = M_1 M_2$.

~ "logical definition relate functions that send related acguments to related results

Definition of $f \lhd_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \operatorname{PCF}_{\tau \to \tau'})$

Definition of $f \triangleleft_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \operatorname{PCF}_{\tau \to \tau'})$

$\begin{array}{l} f \triangleleft_{\tau \to \tau'} M \\ \stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau} \\ (x \triangleleft_{\tau} N \Rightarrow f(x) \triangleleft_{\tau'} M N) \end{array} \end{array}$

The full Definition of $d \triangleleft_{\tau} M$ $(d \in \llbracket \tau \rrbracket, M \in \mathrm{PCF}_{\tau})$

$$d \triangleleft_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{d}(\mathbf{0}))$$

$$d \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (d = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$
$$\& (d = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$$

 $d \triangleleft_{\tau \to \tau'} M \stackrel{\text{def}}{\Leftrightarrow} \forall e, N \ (e \triangleleft_{\tau} N \ \Rightarrow \ d(e) \triangleleft_{\tau'} M N)$

Fundamental property

Theorem. For all $\Gamma = \{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\}$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $[\Gamma \vdash M][x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

Fundamental property

Theorem. For all $\Gamma = \{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\}$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $[\Gamma \vdash M][x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

 $\llbracket M \rrbracket \lhd_{\tau} M$

for all $M \in \mathrm{PCF}_{\tau}$.

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

• Consider the case $M = \mathbf{fix}(M')$.

→ *admissibility* property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

 $\{ d \in \llbracket \tau \rrbracket \mid d \lhd_{\tau} M \}$

is an admissible subset of $[\tau]$.

(Easy proof by induction on structure of types
$$\tau$$
.)

Further properties

Lemma. For all types τ , elements $d, d' \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

- 1. If $d \sqsubseteq d'$ and $d' \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.
- 2. If $d \triangleleft_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \triangleleft_{\tau} N$.

(Easy proofs by induction on structure of types
$$\tau$$
.)

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

 $\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in dom(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Proof of: $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies adequacy Case $\gamma = nat$. $\llbracket M \rrbracket = \llbracket V \rrbracket$ $\implies \llbracket M \rrbracket = \llbracket succ^{n}(\mathbf{0}) \rrbracket$ for some $n \in \mathbb{N}$ $\implies n = \llbracket M \rrbracket \triangleleft_{\gamma} M$ $\implies M \Downarrow succ^{n}(\mathbf{0})$ by definition of \triangleleft_{nat}

Case $\gamma = bool$ is similar.