Relating Denotational \& Operational Semantics [p79 et seq.]

PCF denotational semantics - aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.

Denotations of open terms will be continuous functions.

- Compositionality.

In particular: $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket=\llbracket \mathcal{C}\left[M^{\prime}\right] \rrbracket$.

- Soundness.

For any type $\tau, M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket=\llbracket V \rrbracket$.

- Adequacy.

For $\tau=$ bool or $n a t, \llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \tau \rrbracket \Longrightarrow M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_{1}, M_{2} \in \mathrm{PCF}_{\tau}$, if $\llbracket M_{1} \rrbracket$ and $\llbracket M_{2} \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_{1} \cong_{\text {ctx }} M_{2}: \tau$.

Proof.

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{n a t} V \Rightarrow \llbracket \mathcal{C}\left[M_{1}\right] \rrbracket=\llbracket V \rrbracket \quad \text { (soundness) }
$$

$$
\begin{array}{ll}
\Rightarrow \llbracket \mathcal{C}\left[M_{2}\right] \rrbracket=\llbracket V \rrbracket & \text { (compositionality } \\
& \text { on } \left.\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket\right)
\end{array}
$$

$$
\Rightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\text {nat }} V \quad \text { (adequacy) }
$$

and symmetrically (\& similarly for $\Vdash_{\text {bool }}$).

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M: \tau$ and
$\Gamma \vdash M^{\prime}: \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma^{\prime} \vdash \mathcal{C}[M]: \tau^{\prime}$ and $\Gamma^{\prime} \vdash \mathcal{C}\left[M^{\prime}\right]: \tau^{\prime}$,

$$
\begin{aligned}
& \text { if } \llbracket \Gamma \vdash M \rrbracket=\llbracket \Gamma \vdash M^{\prime} \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket \\
& \text { then } \llbracket \Gamma^{\prime} \vdash \mathcal{C}[M] \rrbracket=\llbracket \Gamma^{\prime} \vdash \mathcal{C}[M\urcorner \rrbracket: \llbracket \Gamma^{\prime} \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket
\end{aligned}
$$

Proof is by induction on the structure of e - straightforward, given how [-I] was defined.

$$
\text { E.g. if }\left\{\begin{array}{l}
\llbracket M_{1} \rrbracket=\llbracket M_{1}^{\prime} \rrbracket \in \llbracket \tau \rightarrow \tau^{\prime} \rrbracket \\
{\left[M_{2} \rrbracket=\llbracket M_{2}^{\prime} \rrbracket \in \llbracket \tau \rrbracket\right.}
\end{array}\right.
$$

then

$$
\begin{aligned}
\llbracket M_{1} M_{2} \rrbracket & =e v_{0}\left\langle\llbracket M_{1} \rrbracket, \llbracket M_{2} \rrbracket\right\rangle \\
& =e v_{0}\left\langle\llbracket M_{1}^{\prime} \rrbracket, \llbracket M_{2}^{\prime} \rrbracket\right\rangle \\
& =\llbracket M_{1}^{\prime} M_{2}^{\prime} \rrbracket
\end{aligned}
$$

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

$$
\text { if } M \Downarrow_{\tau} V \text { then } \llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \tau \rrbracket .
$$

Proof: by me induction for $M \downarrow_{\tau} V$

$$
\text { Induction step for }\left(\Downarrow_{\text {fix }}\right) \frac{M \operatorname{fix}(M) \Downarrow_{\tau} V}{f_{i x}(M) \Downarrow_{\tau} V}
$$

Have to show: $\llbracket M \operatorname{fix}(M) \rrbracket=\llbracket V \rrbracket \Rightarrow \llbracket f_{i x}(M) \rrbracket=\llbracket V \rrbracket$

$$
\text { Induction step for }\left(\Downarrow_{\text {fix }}\right) \frac{M \operatorname{fix}(M) \Downarrow_{\tau} V}{f_{i x}(M) \Downarrow_{\tau} V}
$$

Have to show: $\llbracket M$ fix $(M) \rrbracket=\llbracket V \rrbracket \Rightarrow \llbracket f_{i x}(M) \rrbracket=\llbracket V \rrbracket$
But

$$
\begin{aligned}
& {\left[M \operatorname{fix}(M) \mathbb{Z}=[M]\left(\mathbb{C} f_{i x} M \rrbracket\right)\right.} \\
& \underset{\substack{\text { bydefinition } \\
\text { of } \mathbb{E} \mathbb{D}}}{\longrightarrow} \longrightarrow \mathbb{C M D}\left(f_{i x}(\mathbb{C M D})\right)
\end{aligned}
$$

Induction step for $\left(\Downarrow_{f_{i x}}\right) \frac{M f x(M) \Downarrow_{\tau} V}{f x(M) \Downarrow_{\tau} V}$
Have to show: $\left.\llbracket M \operatorname{fix}(M) \rrbracket=\llbracket V \rrbracket \Rightarrow \mathbb{C} f_{i x}(M) \rrbracket=\llbracket V\right]$
But

Induction step for $\left(\Downarrow_{f_{x}}\right) \frac{M f x(M) \Downarrow_{\tau} V}{f_{x}(M) \Downarrow_{\tau} V}$

But

$$
\text { Induction step for }\left(\Downarrow_{\text {con }}\right) \frac{M_{1} \Downarrow_{\tau \rightarrow \tau^{\prime}} \operatorname{tn} x: \tau M}{M\left[M_{2} / x\right] \Downarrow_{\tau^{\prime}} V}
$$

Suppose $\left\{\begin{array}{l}{\left[M_{1} \mathbb{D}=\llbracket f n x: \tau, M \mathbb{}\right.} \\ \mathbb{C M}\left[M_{2}(x] \rrbracket=\mathbb{C} \vee \rrbracket\right.\end{array}\right.$
Howe to prove $\mathbb{C} M_{1} M_{2} \mathbb{D}=\mathbb{C} \vee \mathbb{D}$.

$$
\text { Induction step for }\left(\uplus_{\text {con }}\right) \frac{M_{1} \|_{\tau \rightarrow \tau^{\prime}} \text { fnx:г } M}{M\left[M_{2} / x\right] \Downarrow_{\tau}, V} \begin{aligned}
& M_{1} M_{2} \Downarrow_{\tau}, V
\end{aligned}
$$

Suppose $\left\{\begin{array}{l}\llbracket M_{1} \mathbb{\rrbracket}=\llbracket \operatorname{fn} x: \tau \cdot M \mathbb{} \\ \mathbb{C} M\left[M_{2} \mid x\right] \rrbracket=\mathbb{C} \vee \rrbracket\end{array}\right.$
Howe to prove $\mathbb{C} M_{1} M_{2} \mathbb{D}=\mathbb{C} \vee \mathbb{J}$.
But $\llbracket M_{1} M_{2} \mathbb{\rrbracket}=\mathbb{C} M_{1} \rrbracket\left(\mathbb{C} M_{2} \mathbb{J}\right)$
by definition of $\mathbb{C} \mathbb{D}$

$$
\begin{aligned}
& \text { Induction step for }\left(\|_{\text {con }}\right) \frac{M_{1} \Downarrow_{\tau \rightarrow \tau,} \text { in } x: \tau M}{M\left[M_{2} \mid x\right] \Downarrow_{\tau}, V} \begin{array}{l}
M_{1} M_{2} \Downarrow_{\tau}, V
\end{array} \\
& \text { Suppose }\left\{\begin{array}{l}
{\left[M_{1} \rrbracket=\mathbb{[} f(n x: \tau . M]\right.} \\
\left.\mathbb{C} M\left[M_{2} \mid x\right] \rrbracket=\mathbb{C} V\right]
\end{array}\right. \\
& \text { Howe to pave } \mathbb{C} M_{1} M_{2} \mathbb{D}=\mathbb{C} \vee \mathbb{D} \text {. } \\
& \text { But } \llbracket M_{1} M_{2} \mathbb{\rrbracket}=\mathbb{C} M_{1} \rrbracket\left(\mathbb{C} M_{2} \mathbb{\square}\right) \\
& =\llbracket f u x: \tau, M \rrbracket\left(\mathbb{C} M_{2} \rrbracket\right)
\end{aligned}
$$

Suppose $\left\{\begin{array}{l}\llbracket M_{1} \mathbb{\rrbracket}=\llbracket \operatorname{fin} x: \tau \cdot M \rrbracket \\ \mathbb{C M}\left[M_{2} \mid x\right] \rrbracket=\llbracket \vee \rrbracket\end{array}\right.$
Howe to prove $\mathbb{C} M_{1} M_{2} \mathbb{D}=\mathbb{C} \vee \mathbb{J}$.

$$
\begin{aligned}
\text { But } \mathbb{[M 1} M_{2} \rrbracket & =\mathbb{C} M_{1} \mathbb{\rrbracket}\left(\mathbb{C} M_{2} \mathbb{J}\right) \\
& =\llbracket\left\{f u x: \tau, M \rrbracket\left(\mathbb{C} M_{2} \rrbracket\right)\right. \\
\begin{array}{c}
\text { by definition } \\
\text { of } \mathbb{E} \mathbb{D}
\end{array} & =\mathbb{C}\{x \mapsto \tau\} \vdash M \rrbracket\left(\mathbb{C} M_{2} \mathbb{J}\right)
\end{aligned}
$$

Substitution property

Proposition. Suppose that $\Gamma \vdash M: \tau$ and that
$\Gamma[x \mapsto \tau] \vdash M^{\prime}: \tau^{\prime}$, so that we also have $\Gamma \vdash M^{\prime}[M / x]: \tau^{\prime}$.
Then,

$$
\begin{aligned}
& \llbracket \Gamma \vdash M^{\prime}[M / x] \rrbracket(\rho) \\
& \left.\quad=\llbracket \Gamma[x \mapsto \tau] \vdash M^{\prime} \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M\rceil]\right)
\end{aligned}
$$

for all $\rho \in \llbracket \Gamma \rrbracket$.
(Can be proved by induction on the Structure of the PCF expression M^{\prime}.)

Substitution property

Proposition. Suppose that $\Gamma \vdash M: \tau$ and that
$\Gamma[x \mapsto \tau] \vdash M^{\prime}: \tau^{\prime}$, so that we also have $\Gamma \vdash M^{\prime}[M / x]: \tau^{\prime}$.
Then,

$$
\begin{aligned}
& \llbracket \Gamma \vdash M^{\prime}[M / x] \rrbracket(\rho) \\
& \quad=\llbracket \Gamma[x \mapsto \tau] \vdash M^{\prime} \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket]) \\
& \in \llbracket \Gamma \rrbracket .
\end{aligned}
$$

for all $\rho \in \llbracket \Gamma \rrbracket$.

In particular when $\Gamma=\emptyset, \llbracket\{x \mapsto \tau\} \vdash M^{\prime} \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket$ and

$$
\llbracket M^{\prime}[M / x] \rrbracket=\llbracket\{x \mapsto \tau\} \vdash M^{\prime} \rrbracket(\llbracket M \rrbracket)
$$

Suppose $\left\{\begin{array}{l}\llbracket M_{1} \mathbb{\rrbracket}=\llbracket \operatorname{fn} x: \tau \cdot M \rrbracket \\ \mathbb{C} M\left[M_{2} \mid x\right] \rrbracket=\llbracket \vee \rrbracket\end{array}\right.$
Howe to prove $\mathbb{C} M_{1} M_{2} \mathbb{D}=\mathbb{C} \vee \mathbb{D}$.

$$
\begin{aligned}
& \text { But } \llbracket M_{1} M_{2} \rrbracket=\mathbb{C} M_{1} \rrbracket\left(\mathbb{C} M_{2} \mathbb{J}\right) \\
& =\llbracket f n x: \tau, M \rrbracket\left(\mathbb{C} M_{2} \rrbracket\right) \\
& =\mathbb{C}\{x \mapsto \tau\} \vdash M]\left(\mathbb{C} M_{2} \mathbb{J}\right) \\
& =\left[M\left[M_{2} / x\right] \rrbracket\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& M_{1} \Downarrow_{\tau \rightarrow \tau^{\prime}} f n x: \tau M \\
& \text { Induction step for }\left(\|_{\text {con }}\right) \frac{M\left[M_{2} \mid x\right] \Downarrow_{\tau}, V}{} \\
& M_{1} M_{\tau} \Downarrow_{\tau}, V
\end{aligned} \\
& \text { Suppose }\left\{\begin{array}{l}
{\left[M_{1}\right]=[\ln x: \tau, M]} \\
\left.\mathbb{C M}\left[M_{2}(x]\right]=\llbracket \vee\right]
\end{array}\right. \\
& \text { Howe to rave }\left[M_{1} M_{2} \mathbb{D}=\mathbb{C} \vee \square\right. \text {. } \\
& \text { But } \llbracket M_{1} M_{2} \rrbracket=\mathbb{C} M_{1} \rrbracket\left(\mathbb{C} M_{2} \mathbb{I}\right) \\
& =\llbracket f u x: \tau, M \rrbracket\left(\mathbb{C} M_{2} \rrbracket\right) \\
& =\mathbb{C}\{x \nmid \tau \tau\} \vdash M \rrbracket\left(\mathbb{C} M_{2} \mathbb{J}\right) \\
& =\left[M\left[M_{2} / x\right] \rrbracket=\llbracket V\right] \quad \text { EnD. }
\end{aligned}
$$

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

NB. Adequacy does not hold at function types

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

NB. Adequacy does not hold at function types:
$\llbracket \mathbf{f n} x: \tau .(\mathbf{f n} y: \tau . y) x \rrbracket=\llbracket \mathbf{f n} x: \tau . x \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

NB. Adequacy does not hold at function types:

$$
\llbracket \mathbf{f n} x: \tau .(\mathbf{f n} y: \tau . y) x \rrbracket=\llbracket \mathbf{f n} x: \tau . x \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket
$$ but

$$
\mathbf{f n} x: \tau .(\mathbf{f n} y: \tau . y) x \psi_{\tau \rightarrow \tau} \mathbf{f n} x: \tau . x
$$

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}, \operatorname{fix}\left(M^{\prime}\right)$.

nat
or bol

Mi\& M'
are of function type

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}$, fix $\left(M^{\prime}\right)$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}$, fix $\left(M^{\prime}\right)$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.
This statement roughly takes the form:

$$
\llbracket M \rrbracket \triangleleft_{\tau} M \text { for all types } \tau \text { and all } M \in \mathrm{PCF}_{\tau}
$$

where the formal approximation relations

$$
\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau} \longleftarrow \begin{gathered}
\text { Closed PCF } \\
\text { terms of }
\end{gathered}
$$

are logically chosen to allow a proof by induction.

Requirements on the formal approximation relations, I
We want that, for $\gamma \in\{$ nat, bool $\}$,
$\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies $\underbrace{\forall V\left(\llbracket M \rrbracket=\llbracket V \rrbracket \Longrightarrow M \Downarrow_{\gamma} V\right)}_{\text {adequacy }}$

Definition of $d \triangleleft_{\gamma} M\left(d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma}\right)$

for $\gamma \in\{$ nat, bool $\}$
$n \triangleleft_{\text {nat }} M \stackrel{\text { def }}{\Leftrightarrow}\left(n \in \mathbb{N} \Rightarrow M \Downarrow_{\text {nat }} \operatorname{succ}^{n}(\mathbf{0})\right)$
$b \triangleleft_{\text {bool }} M \stackrel{\text { def }}{\Leftrightarrow} \quad\left(b=\right.$ true $\Rightarrow M \Downarrow_{\text {bool }}$ true $)$

$$
\&\left(b=\text { false } \Rightarrow M \Downarrow_{\text {bool }} \text { false }\right)
$$

Proof of: $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies adequacy

Case $\gamma=$ nat.

$$
\begin{aligned}
\llbracket M \rrbracket & =\llbracket V \rrbracket \\
& \Longrightarrow \llbracket M \rrbracket=\llbracket \operatorname{succ}^{n}(\mathbf{0}) \rrbracket \\
& \text { for some } n \in \mathbb{N} \\
& \Longrightarrow n=\llbracket M \rrbracket \triangleleft_{\gamma} M
\end{aligned} \quad \text { } \begin{aligned}
\Longrightarrow & \\
& \Longrightarrow \Downarrow \operatorname{succ}^{n}(\mathbf{0})
\end{aligned} \quad \text { by definition of } \triangleleft_{n a t}
$$

Case $\gamma=$ bool is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

- Consider the case $M=M_{1} M_{2}$.
~"logical"definition

$$
\begin{aligned}
& \text { relate functions } \\
& \text { that send related } \\
& \text { arguments to related } \\
& \text { results }
\end{aligned}
$$

Definition of

$f \triangleleft_{\tau \rightarrow \tau^{\prime}} M\left(f \in\left(\llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket\right), M \in \mathrm{PCF}_{\tau \rightarrow \tau^{\prime}}\right)$

Definition of

$f \triangleleft_{\tau \rightarrow \tau^{\prime}} M\left(f \in\left(\llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket\right), M \in \mathrm{PCF}_{\tau \rightarrow \tau^{\prime}}\right)$

$$
\begin{aligned}
& f \triangleleft_{\tau \rightarrow \tau^{\prime}} M \\
& \stackrel{\text { def }}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau} \\
& \quad\left(x \triangleleft_{\tau} N \Rightarrow f(x) \triangleleft_{\tau^{\prime}} M N\right)
\end{aligned}
$$

The full Definition of $\quad d \triangleleft_{\tau} M \quad\left(d \in \llbracket \tau \rrbracket, M \in \mathrm{PCF}_{\tau}\right)$

$$
\begin{array}{r}
d \triangleleft_{\text {nat }} M \stackrel{\text { def }}{\Leftrightarrow}\left(d \in \mathbb{N} \Rightarrow M \Downarrow_{\text {nat }} \operatorname{succ}^{d}(\mathbf{0})\right) \\
d \triangleleft_{\text {bool }} M \stackrel{\text { def }}{\Leftrightarrow}\left(d=\text { true } \Rightarrow M \Downarrow_{\text {bool }} \text { true }\right) \\
\&\left(d=\text { false } \Rightarrow M \Downarrow_{\text {bool }} \text { false }\right) \\
d \triangleleft_{\tau \rightarrow \tau^{\prime}} M \stackrel{\text { def }}{\Leftrightarrow} \forall e, N\left(e \triangleleft_{\tau} N \Rightarrow d(e) \triangleleft_{\tau^{\prime}} M N\right)
\end{array}
$$

Fundamental property

Theorem. For all $\Gamma=\left\{x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\}$ and all
$\Gamma \vdash M: \tau$, if $d_{1} \triangleleft_{\tau_{1}} M_{1}, \ldots, d_{n} \triangleleft_{\tau_{n}} M_{n}$ then
$\llbracket \Gamma \vdash M \rrbracket\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \triangleleft_{\tau} M\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]$.

Fundamental property

Theorem. For all $\Gamma=\left\{x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\}$ and all
$\Gamma \vdash M: \tau$, if $d_{1} \triangleleft_{\tau_{1}} M_{1}, \ldots, d_{n} \triangleleft_{\tau_{n}} M_{n}$ then
$\llbracket \Gamma \vdash M \rrbracket\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \triangleleft_{\tau} M\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]$.

NB. The case $\Gamma=\emptyset$ reduces to

$$
\llbracket M \rrbracket \triangleleft_{\tau} M
$$

for all $M \in \mathrm{PCF}_{\tau}$.

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

- Consider the case $M=\mathrm{fix}\left(M^{\prime}\right)$.
$~$ admissibility property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$
\left\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} M\right\}
$$

is an admissible subset of $\llbracket \tau \rrbracket$.
(Easy proof by induction on structure of types τ.)

Further properties

Lemma. For all types τ, elements $d, d^{\prime} \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

1. If $d \sqsubseteq d^{\prime}$ and $d^{\prime} \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.
2. If $d \triangleleft_{\tau} M$ and $\forall V\left(M \Downarrow_{\tau} V \Longrightarrow N \Downarrow_{\tau} V\right)$ then $d \triangleleft_{\tau} N$.
(Easy proofs by induction on structure of types τ.)

Fundamental property of the relations \forall_{τ}

Proposition. If $\Gamma \vdash M: \tau$ is a valid PCF typing, then for all
Γ-environments ρ and all Γ-substitutions σ

$$
\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]
$$

(Proof by mule induction for $[\vdash M: \tau$-see p84-86)

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in \operatorname{dom}(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in \operatorname{dom}(\Gamma)$.

Proof of: $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies adequacy

Case $\gamma=$ nat.

$$
\begin{aligned}
\llbracket M \rrbracket & =\llbracket V \rrbracket \\
& \Longrightarrow \llbracket M \rrbracket=\llbracket \operatorname{succ}^{n}(\mathbf{0}) \rrbracket \\
& \text { for some } n \in \mathbb{N} \\
& \Longrightarrow n=\llbracket M \rrbracket \triangleleft_{\gamma} M
\end{aligned} \quad \text { } \begin{aligned}
\Longrightarrow & \\
& \Longrightarrow \Downarrow \operatorname{succ}^{n}(\mathbf{0})
\end{aligned} \quad \text { by definition of } \triangleleft_{n a t}
$$

Case $\gamma=$ bool is similar.

