Denotational Semantics

12 lectures for Part II CST 2011/12

Andrew Pitts

Course web page:
http://www.cl.cam.ac.uk/teaching/1112/DenotSem/

$$
\text { copies of slides } \hat{\imath}
$$

Styles of formal semantics

Operational. IB Sem of PLS
Meanings for program phrases defined in terms of the steps of computation they can take during program execution.
Axiomatic. II Hocure Logic
Meanings for program phrases defined indirectly via the axioms and rules of some logic of program properties.
Denotational. This course!
Concerned with giving mathematical models of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Why do we care?

- Rigour.
... specification of programming languages
... justification of program transformations
- Insight.
... generalisations of notions computability
... higher-order functions
... data structures
- Feedback into language design.
... continuations
... monads
- Reasoning principles.
... Scott induction
... Logical relations
... Co-induction

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics

$$
P \quad \mapsto \quad \llbracket P \rrbracket
$$

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics
Recursive program $\quad \mapsto \quad$ Partial recursive function
Boolean circuit $\quad \mapsto \quad$ Boolean function

$$
P \quad \mapsto \quad \llbracket P \rrbracket
$$

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation, $\llbracket P \rrbracket$ - a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics

Recursive program $\quad \mapsto \quad$ Partial recursive function

Boolean circuit $\quad \mapsto \quad$ Boolean function

$$
P \quad \mapsto \quad \llbracket P \rrbracket
$$

Concerns:

- Abstract models (ie. implementation/machine independent). \rightsquigarrow lIst ${ }^{11} 3 r d$ of course
- Compositionality.

$$
\rightsquigarrow \text { end } 1 / 3 \mathrm{rd} \text { of course "PCF" }
$$

- Relationship to computation (e.g. operational semantics).
\leadsto last $1 / 3 \mathrm{rd}$ of course

Basic example of denotational semantics (I)

$$
\mathrm{IMP}^{-} \text {syntax }
$$

Arithmetic expressions

$$
\begin{aligned}
A \in \operatorname{Aexp}::= & \left.\frac{n}{}|L| A+A \right\rvert\, \ldots \\
& \text { where } n \text { ranges over integers and } \\
& L \text { over a specified set of locations } \mathbb{L}
\end{aligned}
$$

Boolean expressions

$$
B \in \mathbf{B e x p} \quad::=\text { true } \mid \text { false }|A=A| \ldots
$$

$$
|\quad \neg B| \ldots
$$

Commands
$C \in \mathbf{C o m m}::=$ skip $|L:=A| C ; C$
| if B then C else C

Basic example of denotational semantics (II)

Basic example of denotational semantics (II)

Semantic functions

$$
\begin{array}{ll}
\mathcal{A}: & \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
\mathcal{B}: & \text { Bexp } \rightarrow(\text { State } \rightarrow \mathbb{B})
\end{array}
$$

where

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\} \\
\text { State } & =(\mathbb{L} \rightarrow \mathbb{Z})
\end{aligned}
$$

Basic example of denotational semantics (II)

Semantic functions

$$
\begin{array}{ll}
\mathcal{A}: \quad \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) & \\
\mathcal{B}: \quad \text { Beep } \rightarrow(\text { State } \rightarrow \mathbb{B}) & \\
\mathcal{C}: \quad \mathbf{C o m m} \rightarrow(\underbrace{\text { State } \rightarrow \text { State }}_{\sim}) & \\
& \\
\mathbb{Z}=\{\ldots,-1,0,1, \ldots\} & \text { set of all } \\
\mathbb{B}=\{\text { true, false }\} & \text { partial } \\
\text { State }=(\mathbb{L} \rightarrow \mathbb{Z}) & \text { fromctions } \\
&
\end{array}
$$

Partial functions

$$
\text { ordered pairs }\{(x, y) \mid x \in X \wedge y \in Y\}
$$

i.e. for all $x \in X$ there is at most one $y \in Y$ with $(x, y) \in f$

Definition. A partial function from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$
(x, y) \in f \wedge\left(x, y^{\prime}\right) \in f \rightarrow y=y^{\prime}
$$

for all $x \in X$ and $y, y^{\prime} \in Y$.

Basic example of denotational semantics (III)

Semantic function \mathcal{A}

$$
\begin{aligned}
& \mathcal{A} \llbracket \underline{n} \rrbracket=\lambda s \in \text { State. } n \\
& \mathcal{A} \llbracket L \rrbracket=\lambda s \in \text { State. } s(L) \\
& \mathcal{A} \llbracket A_{1}+A_{2} \rrbracket=\lambda s \in \text { State. } \mathcal{A} \llbracket A_{1} \rrbracket(s)+\mathcal{A} \llbracket A_{2} \rrbracket(s)
\end{aligned}
$$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$
\begin{aligned}
\mathcal{B} \llbracket \text { true }= & \lambda s \in \text { State. true } \\
\mathcal{B} \llbracket \text { false } \rrbracket= & \lambda s \in \text { State.false } \\
\mathcal{B} \llbracket A_{1}=A_{2} \rrbracket= & \lambda s \in \text { State. } e q\left(\mathcal{A} \llbracket A_{1} \rrbracket(s), \mathcal{A} \llbracket A_{2} \rrbracket(s)\right) \\
& \text { where } e q\left(a, a^{\prime}\right)= \begin{cases}\text { true } & \text { if } a=a^{\prime} \\
\text { false } & \text { if } a \neq a^{\prime}\end{cases}
\end{aligned}
$$

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

$$
\llbracket \text { skip } \rrbracket=\lambda s \in \text { State.s }
$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State \rightharpoonup State and a function $\llbracket B \rrbracket:$ State $\rightarrow\{$ true, false $\}$, we can define
$\llbracket i f B$ then C else $C^{\prime} \rrbracket=$

$$
\lambda s \in \text { State. if }\left(\llbracket B \rrbracket(s), \llbracket C \rrbracket(s), \llbracket C^{\prime} \rrbracket(s)\right)
$$

where

$$
\text { if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\ x^{\prime} & \text { if } b=\text { false }\end{cases}
$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$
\begin{aligned}
\llbracket L:=A \rrbracket & = \\
& \lambda s \in \text { State. } \lambda \ell \in \mathbb{L} . \text { if }(\ell=L, \llbracket A \rrbracket(s), s(\ell))
\end{aligned}
$$

Denotational semantics of sequential composition

Denotation of sequential composition $C ; C^{\prime}$ of two commands

$$
\llbracket C ; C^{\prime} \rrbracket=\llbracket C^{\prime} \rrbracket \circ \llbracket C \rrbracket=\lambda s \in \text { State. } \llbracket C^{\prime} \rrbracket(\llbracket C \rrbracket(s))
$$

given by composition of the partial functions from states to states
$\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State \rightharpoonup State which are the denotations of the commands.

Denotational semantics of sequential composition

Denotation of sequential composition $C ; C^{\prime}$ of two commands

$$
\llbracket C ; C^{\prime} \rrbracket=\llbracket C^{\prime} \rrbracket \circ \llbracket C \rrbracket=\lambda s \in \text { State } . \llbracket C^{\prime} \rrbracket(\llbracket C \rrbracket(s))
$$

given by composition of the partial functions from/states to states $\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State - State which are the denotations of the commands.

- either $\mathbb{[C] (s)}$ is undefined
- or $\llbracket \subset](s)=s^{\prime}$, say, and $\llbracket C^{\prime} \rrbracket\left(s^{\prime}\right)$ is undefined.

Denotational semantics of sequential composition

Denotation of sequential composition $C ; C^{\prime}$ of two commands

$$
\llbracket C ; C^{\prime} \rrbracket=\llbracket C^{\prime} \rrbracket \circ \llbracket C \rrbracket=\lambda s \in \text { State } \llbracket C^{\prime} \rrbracket(\llbracket C \rrbracket(s))
$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State \rightharpoonup State which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$
\frac{C, s \Downarrow s^{\prime} C^{\prime}, s^{\prime} \Downarrow s^{\prime \prime}}{C ; C^{\prime}, s \Downarrow s^{\prime \prime}}
$$

while B do $C \rrbracket$
Extend the language IMP to a language IMP by extending the grammar of commands:
$C \in$ Comm $\because:=\ldots$ | while B do C
while B do $C \rrbracket$
Operational semantics of while-loops
\langle while B do $C, s\rangle \rightarrow$
\langle if B then C; (while B do C) else skip, $s\rangle$
Suggests looking for a denotation [while B do CI
satisfying
Twhile B do $C \rrbracket=$
[I if B then C; (while B doC) else skip I]

Fixed point property of

 \llbracket while B do $C \rrbracket$
\llbracket while B do $C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket$ while B do $C \rrbracket)$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and $c:$ State \rightharpoonup State, we define

$$
f_{b, c}:(\text { State } \rightharpoonup \text { State }) \rightarrow(\text { State } \rightharpoonup \text { State })
$$

$f_{b, c}=\lambda w \in($ State \rightharpoonup State $) . \lambda s \in$ State.

$$
\text { if }(b(s), w(c(s)), s)
$$

Fixed point property of

 \llbracket while B do $C \rrbracket$$$
\llbracket \text { while } B \text { do } C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \text { while } B \text { do } C \rrbracket)
$$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and
$c: S t a t e \rightharpoonup$ State, we define

$$
f_{b, c}:(\text { State } \rightharpoonup \text { State }) \rightarrow(\text { State } \rightharpoonup \text { State })
$$

$$
f_{b, c}=\lambda w \in(\text { State } \rightharpoonup \text { State }) . \lambda s \in \text { State. }
$$

$$
i f(b(s), w(c(s)), s)
$$

- Why does $w=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions-which one do we take to be \llbracket while B do $C \rrbracket$?

\llbracket while $X>0$ do $(Y:=X * Y ; X:=X-1) \rrbracket$

Let
State $\stackrel{\text { def }}{=}(\mathbb{L} \rightarrow \mathbb{Z})$
integer assignments to locations

$$
D \stackrel{\text { def }}{=}(\text { State } \rightharpoonup \text { State }) \quad \text { partial functions on states }
$$

For \llbracket while $X>0$ do $Y:=X * Y ; X:=X-1 \rrbracket \in D$ we seek a minimal solution to $w=f(w)$, where $f: D \rightarrow D$ is defined by:

$$
\begin{aligned}
& f(w)([X \mapsto x, Y \mapsto y]) \\
& \quad= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w([X \mapsto x-1, Y \mapsto x * y]) & \text { if } x>0\end{cases}
\end{aligned}
$$

$$
D \stackrel{\text { def }}{=}(\text { State } \rightharpoonup \text { State })
$$

- Partial order \sqsubseteq on D :
$w \sqsubseteq w^{\prime} \quad$ iff \quad for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
iff the graph of w is included in the graph of w^{\prime}.
- Least element $\perp \in D$ w.r.t. \sqsubseteq :
$\perp=$ totally undefined partial function
$=$ partial function with empty graph
(satisfies $\perp \sqsubseteq w$, for all $w \in D$).
$f: D \rightarrow D$ is given by

$$
f(W)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \leftrightarrow y]} & \text { if } x \leq 0 \\ W[X \leftrightarrow x-y, Y \leftrightarrow x * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(\perp))$, etc.

$$
\omega_{0}[x \not x x, y \vdash s y]=\text { undefined }
$$

$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \leftrightarrow y]} & \text { if } x \leq 0 \\ W[X \leftrightarrow x \mapsto, Y \leftrightarrow x * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.

$$
\omega_{1}[X \mapsto x, Y \vdash y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ \text { undefined } & \text { if } x \geq 1\end{cases}
$$

$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \leftrightarrow y]} & \text { if } x \leq 0 \\ W[X \leftrightarrow x-Y \leftrightarrow x * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.

$$
\omega_{2}[X \leftrightarrow x, Y \leftrightarrow y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \leftrightarrow 0, Y \mapsto y]} & \text { if } x=1 \\ \text { undefined } & \text { if } x \geqslant 2\end{cases}
$$

$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \leftrightarrow y]} & \text { if } x \leq 0 \\ W[X \leftrightarrow x \mapsto, Y \leftrightarrow x * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.

$$
\omega_{3}[X \mapsto x, Y \nleftarrow y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \mapsto 0, Y \mapsto y]} & \text { if } x=1 \\ {[X \mapsto 0, Y \leftrightarrow 2 y]} & \text { if } x=2 \\ \text { undefined } & \text { if } x \geqslant 3\end{cases}
$$

$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \leftrightarrow y]} & \text { if } x \leq 0 \\ W[X \leftrightarrow x-Y, Y \leftrightarrow X * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.

$$
\omega_{4}[X \mapsto x, Y \nLeftarrow y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \mapsto 0, Y \mapsto y]} & \text { if } x=1 \\ {[X \mapsto 0, Y \leftrightarrow 2 y]} & \text { if } x=2 \\ {[X \mapsto 0, Y \mapsto 6 y]} & \text { if } x=3 \\ \text { undefined } & \text { if } x \geqslant 4\end{cases}
$$

$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \leftrightarrow y]} & \text { if } x \leq 0 \\ W[X \leftrightarrow x-1, Y \leftrightarrow x * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.
Union $\omega_{\infty}=\omega_{0} \cup \omega_{1} \cup \omega_{2} \cup \cdots$ is the function

$$
\omega_{\infty}[x \mapsto x, Y \mapsto y]=\left\{\begin{array}{lll}
{[x \mapsto x, Y \mapsto y]} & \text { if } & x \leqslant 0 \\
{[x \mapsto 0, Y \mapsto!x * y]} & \text { if } & x>0
\end{array}\right.
$$

$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ \omega\left[X \mapsto x-1, Y \mapsto X_{*} y\right] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.
Union $\omega_{\infty}=\omega_{0} \cup \omega_{1} \cup \omega_{2} \cup \cdots$ is the function

$$
\omega_{\infty}[x \mapsto x, Y \mapsto y]= \begin{cases}{[x \mapsto x, Y \mapsto y]} & \text { if } x \leqslant 0 \\ {[x \mapsto 0, Y \mapsto!x * y]} & \text { if } x>0\end{cases}
$$

It satisfies $\omega_{\infty}=f\left(\omega_{\infty}\right)$ - fixed point we seek for definition of [while $x>\operatorname{do}\left(y:=Y_{*} x ; x:=x-1\right) \rrbracket$
$f: D \rightarrow D$ is given by

$$
f(\omega)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ W[X \mapsto x-Y \mapsto X * y] & \text { if } x>0\end{cases}
$$

Want to find $\omega \in D$ s.t. $\omega=f(\omega)$
Define $\omega_{0}=1, \omega_{1}=f(\perp), \omega_{2}=f(f(1))$, etc.
Union $\omega_{\infty}=\omega_{0} \cup \omega_{1} \cup \omega_{2} \cup \cdots$ is the function

$$
\omega_{\infty}[X \mapsto x, Y \nleftarrow y]= \begin{cases}{[x \mapsto x, Y \mapsto y]} & \text { if } x \leqslant 0 \\ {[X \mapsto 0, Y \mapsto!x * y]} & \text { if } x>0\end{cases}
$$

It satisfies $\omega_{\infty}=f\left(\omega_{\infty}\right)$ and $(\forall \omega) \omega=f(\omega) \Rightarrow \omega_{\infty} \subseteq \omega \quad-\omega_{\infty}$ is a Least fixed point for f

