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1 Introduction

These notes provide a reminder of some simple manipulati@tgurn up a great deal when dealing
with probabilities. The material in this handout—assumymy know it well—should suffice for
getting you through most of the Al material on uncertain oga®y. In particular, the boxed results
are the really important ones.

Random variables (RVs) are by convention given capitaisitSay we have the RV, ..., X,,.
Their values are given using lower case. So for examplemight be a binary RV taking val-
uestrue andfalse, and X, might be the outcome of rolling a die and therefore takingueal
one, two,...,six.

The use of probability in Al essentially reduces to représgnin some usable way the joint
distribution P( X1, ..., X,,) of all the RVs our agent is interested in, because if we camalothen in
principle we can computany probability that might be of interest. (This is explainedutl below.)

To be clear, the joint distribution is talking about tbanjunction of the RVs. We'll stick to the
convention that a comma-separated list of RVs (or a set of) Rfwesents a conjunction. Also, the

notation
> (mi)

T, €X;
denotes the sum over athlues of a random variable. So for exampleXf; is binary then
> P(x1,X;) = P(true, X,) + P(false, X5). (1)
r1€X1

This extends to summing oveets of RVs. Let’s define

X = {le"'>Xn}
and

X' ={X1,..., X}

Then for any setX and X’ C X of RVs defineX\X' to be the seX with the elements oK’
removed
X\X' = {X € X|X ¢ X'}

We'll always be assuming th&’ C X. Finally

ST (o @)

z'eX’

SN Y (@)

/ /aw; / ’ ’
‘TleXl £B2€X2 ‘TrneX'nL

means



2 Standard trick number 1. marginalising

Marginalising is the process of getting rid of RVs that we don't want to havéinink about—although
in some cases it’s used the other way around to introducables. In general, say we want to ignore
X;. Then

P(X\{X;}) = ) P(X).

T, €X;

So for example, equation 1 is actually telling us that vikth= { X3, X}
P(X3) = P(X\{X1})
= Z P(l‘l,XQ)

z1€X1
= P(true, Xy) + P(false, X»).

This can obviously be iterated for as many RVs as we like, X'ifs the set of random variables
we're not interested in then

PX\X)= ) PX)|

z’'eX’!

These notes assume for the most part that RVs are discredeytBing still applies when continuous
RVs are involved, but sums are then replaced by integrals. ekample, we can marginalise the
two-dimensional Gaussian density

1 1
p(x1,x2) = Py exp <—§ (w% + x%))

as follows

1 [ 1
p(x1) = %/ exp <—§ (x% + x%)) dxy.

—0o0

3 Standard trick number 2: you can treat a conjunction of RVs as an
RV

When we consider events suchds = true and Xs = four, theconjunction of the events is also an
event. This goes for any number of events, and any number sfédRWvell. Why is that interesting?
Well, Bayes’ theorem usually looks like this

PY|X)P(X)

P(X|Y) = Y

However as a conjunction of RVs can be treated as a RV we camaite things like

P(X2, X3, X109/ X1, X5)P(X1, X5)

P(X1, X5| X2, X3, X10) = P(Xa2, X3, X10)

and Bayes’ theorem still works.



4 Standard trick number 3: conditional distributions are still distribu-
tions

This is perhaps the point | want to make that's most often edisa conditional probability distribu-

tion is still a probability distribution. Consequently the first two tricks extend to them without any

extra work—you simply apply them while leaving the condiiitg RVs (the ones on the right hand
side of the in P(...|...)) alone. So, for instance, we can write

P(X1|X3) = Y P(X1,X5|X3)

o€ X2

or in general for sets of RVs

P(X|Z)=> P(X,Y|Z)|
yeY

Quite often this trick is used timtroduce extra RVs inY rather than eliminate them. The reason for
this is that you can then try to re-arrange the contents aétineto get something useful. In particular
you can often use the following further tricks.

Just as marginalisation still works for conditional distiions, so do Bayes’ theorem and related
ideas. For example, the definition of a conditional distidoulooks like this

P(X,Y)

PIXIY) = 5

2
o)
P(X,Y)=PX|Y)P(Y).
As the left hand side of this equation is a joint probabilitgtdbution, and conjunctions of RVs act
like RVs, we can extend this to arbitrary numbers of RVs to fpetexample
P(X1, X2, X3) = P(X1]X2, X3)P(X2, X3)
= P(X1]| X2, X3)P(X2|X3)P(X3).

What's more useful however is to note that Bayes’ theorentiained from equation 2 and its twin

P(X,Y)

P(Y|X) = PO

by a simple re-arrangement. How might this work if we havejwoctions of random variables?
Consider

P(X,Y,Z)
PX|Y,Z)= —————=
and its twin PX.Y.2)

both of which follow from the definition of conditional probiity. Re-arranging to eliminate the
P(X,Y, Z) gives
PY|X,Z)P(X, Z)

P(X|Y,Z) = BV )




We now have two smaller joint distributio3(Y, Z) and P(X, Z) which we can split to give
PY|X, 2)P(X|2)P(Z)
PY|2)P(Z)
P(Y|X,Z)P(X|Z)
P(Y\|Z

P(X|Y, 2) =

or in general, with sets of RVs

P(Y|X,Z)P(X|Z)

P(X|Y,Z) = YD)

3)

5 Howto (in principle) compute absolutely anything

Say you want to compute a conditional probabilRyX|Z). By definition
P(X,Z)
P(Z)
and if the complete collection of all the RVs our agent isriested in is{X,Y,Z} then both the
numerator and the denominator can be computed by margiatise joint distributionP(X,Y, Z).

In fact as the denominator serves essentially just to makéethhand side sum tb (when we sum
overX) so that it's a proper probability distribution, we ofterdt it just as a constant and write

P(X|Z) =

P(X|Z) = Z P(X,Y,Z)|
yEY

The quantityZ is called thepartition function if you're a physicist orevidence if you're a computer
scientist, for reasons that will become clear during thaules.

6 Why multiplication of factorsworks

This section is really about an algorithm rather than praligls. We provide a simple explanation
of why the multiplication offactors in the manner suggested in the lecture notes works, and why it
avoids duplicating the computation of sub-expressions.

6.1 Why it works

Let’s drop any reference to probabilities for the momentjastilook at general summations involving
functions. Say you have three finite s&fs= {z1,...,z,}, Y ={y1,...,y,tandZ = {z,..., 2.},
and you want to compute a summation like

) =>_g(z,y,2)h(y,2) (4)
z€Z
for valuesr € X andy € Y. The sum will look like

f(x,y) = g(x,y, Zl)h(y’ Zl) +ooet+ g(ac,y, ZT)h(y’ ZT)'

In other words, the products you need to compute are thefonegich values of z coincide. This,
in a nutshell, is what the process of combining factors agsieln this example, we would write the
factors in the sum as



x|y |z | Flzy,z)
T1 | Y1 | 2 9(5517111,21)
1 | Y1 | =2 g(wl,yhzz)

Ty | Yq | 20 | 9(Tp,Ygs 2r)

and

y | 2z | Fy(y,2)
yi | 21 | h(y1, 21)
Y1 | %2 h(yb 22)

Yq | 2r h(ytp Zr)
When the factors are multiplied we match up and multiply #i#e entries for which variables com-
mon to both have matching values. So for example

x y z F:B,y(xvyvz)
T1 | Y1 | 2 9(951,@/1721)]1(111721)
x| y1 | 22 | 9(x1,y1,22)h(y1, 22)

Tp | Yq | 2r g(xpayqy Zr)h(ytp Zr)
In order to deal with the summation to form the factr, (=, y) we now form sums of the entries in
F, (z,y,z) over all values for, so

T |y Foy(2,y)
1 | N ZzeZFm,y(xlvyhz)
X1 Y2 ZZGZ Fx7y(wlay27z)

Tp | Yq | 2osez Foy(@p,Yg, 2)
Expanding out one of these summations results in somettkiag |

Fm,y(xlva) = Zg(zl,yg,z)h(yg,z). (5)
z€Z

Comparing equations 4 and 5 we see that the entries in ther gt (x, y) are just the values of the
summation for each possible pair of valueandy.

6.2 Therelationship to probabilities

So: the tabular process using factors is just a way of kedpaag of the values needed to compute the
sum. In the probabilistic inference algorithm the functigh g, » and so on are all just (conditional)
probability distributions, and because we're dealing wlith decomposition

n
Pr(X1,...,X,) = [ Pr(Xi[parents X))
i=1
on adirected, acyclic graph we start off with a factor forfeRY, and each time we get to a summation
we sum out the corresponding variable. (The above examme dot have this structure, which is
why the summing out notatioR;, , > does not appear, but the process is identical.)

5



6.3 Why it avoidsduplication

Reverting now to probabilities, say we have a Bayes netwwakrepresents the decomposition
PI‘(X, Yl, YQ, El, Eg) = PI‘(El‘Yl, Yg) Pr(EQ‘YQ) PI‘(YQ’X) PI‘(X) PI‘(Yl).

(Exercise: draw it.) Now we attempt to compute the inference

1
Pr(Xle1,e2) = Pr(X)yZe; Pr(Yl)yze; Pr(Ys|X) Pr(e1|Y1, Ya) Pr(es|Ys).
1 1 2 2

The repetition of computations arises in summations like tiecause—handled in the naive way
using recursive depth-first evaluation—the summation

> Pr(Ya|X) Pr(e|V1, Y2) Pr(ea|Y2)
y2€Y2

will involve computing the producPr(Y:|X) Pr(es|Y3) for each value ofY;. This problem will
repeat itself for each value of. By computing and storing each of the products needed ordg on
the method based on factors avoids this.

7 Further tricks

We now look at some further simple manipulations that areleeé¢o understand the application of
Bayes’ theorem to supervised learning. Once again, randoiables are assumed to be discrete, but
all the following results still hold for continuous randorariables, with sums replaced by integrals
where necessary.

7.1 Some (slightly) unconventional notation

In the machine learning literature there is a common natdtitended to make it easy to keep track
of which random variables and which distributions are ratgévn an expression. While this notation
is common within the field, it's rarely if ever seen elsewhdras however very useful.

A statistician would define thexpected value of the random variablé& as

E[X]=)> zP(z)

zeX

or when we’re interested in the expected value of a functicmrandom variable

E[f(X)] = f(z)P(z)

zeX

where f is some function defined oX. Here, it is implicit that the probability distribution fak

is P. With complex expressions involving combinations of fumes defined on random variables
with multiple underlying distributions it can be more tricko keep track of which distributions are
relevant. Thus the notation

Euopix) [£(X)]



is intended to indicate explicitly that the distribution ¥fis P, in situations where we don't write out

the full definition
E,wpx) [f(X)] = Z f(x)P(z
rzeX

to make it clear. The same notation is also often appliedai@istents about probabilities rather than
expected values.
7.2 Expected value and conditional expected value

The standard definition of the expected value of a funcfiaf a random variabl& is

E.opox) [f(X)] = Z f(@)P(z

zeX

as already noted. We can also definedtditional expected value of f(X) givenY as

Eoopxiv) [f(X)Y] = Z f(x)P(z|Y

zeX

Now here’s an important pointthe value of this expression depends on the value of Y. Thus, the
conditional expected value is itself a function of the ramdeariableY. What is its expected value?
Well

Eypv) [Ezmpxvy Lf ZE:ENP x|y [F(X)Y]P(y)
yey

=> > f@)P(xly)P(y)

yeY xeX

:ZZf(x)P:U

yeY zeX

=Y 1@ Pla,y)

zeX yey

= f(@)P(a)

zeX
=E,wpx) [f(X)]

or in the more usual notation

[E[E[f(X)|Y] =E[f(X)]]

7.3 Expected value of the indicator function

For anyb € {true, false} theindicator function I is defined as

1 ifb=true
H(b):{ 0 if b=false



Let f be a Boolean-valued function on a random variakleThen

E,p(x) [I(f(2))] = Y I(f())P(2)

zeX

= Y I(f@)P) + > I(f(x)P(x)

z€X, f(x) istrue z€X, f(x)is false

= Z P(x)

z€X, f(z) is true

= fz~P(z) [f(CL') = true]

In other words,the probability of an event is equal to the expected value of its indicator function.
This provides a standard method for calculating probadsliby evaluating expected values. So for
example if we roll a fair die and consid¢f X) to be true if and only if the outcome is even then

P(outcome iseven=E [I(f(X))]=1/64+1/6+1/6 =1/2

as expected.



