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1 Introduction

These notes provide a reminder of some simple manipulationsthat turn up a great deal when dealing
with probabilities. The material in this handout—assumingyou know it well—should suffice for
getting you through most of the AI material on uncertain reasoning. In particular, the boxed results
are the really important ones.

Random variables (RVs) are by convention given capital letters. Say we have the RVsX1, . . . ,Xn.
Their values are given using lower case. So for exampleX1 might be a binary RV taking val-
uestrue and false, andX2 might be the outcome of rolling a die and therefore taking values
one, two, . . . , six.

The use of probability in AI essentially reduces to representing in some usable way the joint
distributionP (X1, . . . ,Xn) of all the RVs our agent is interested in, because if we can do that then in
principle we can computeany probability that might be of interest. (This is explained infull below.)

To be clear, the joint distribution is talking about theconjunction of the RVs. We’ll stick to the
convention that a comma-separated list of RVs (or a set of RVs) represents a conjunction. Also, the
notation

∑

xi∈Xi

(. . . xi . . .)

denotes the sum over allvalues of a random variable. So for example ifX1 is binary then

∑

x1∈X1

P (x1,X2) = P (true,X2) + P (false,X2). (1)

This extends to summing oversets of RVs. Let’s define

X = {X1, . . . ,Xn}

and
X

′ = {X ′
1, . . . ,X

′
m}.

Then for any setsX andX
′ ⊆ X of RVs defineX\X′ to be the setX with the elements ofX′

removed
X\X′ = {X ∈ X|X 6∈ X

′}.

We’ll always be assuming thatX′ ⊆ X. Finally

∑

x′∈X′

(

. . . , x′
1, . . . , x

′
m, . . .

)

means
∑

x′

1
∈X′

1

∑

x′

2
∈X′

2

· · ·
∑

x′

m
∈X′

m

(

. . . , x′
1, . . . , x

′
m, . . .

)

.
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2 Standard trick number 1: marginalising

Marginalising is the process of getting rid of RVs that we don’t want to have to think about—although
in some cases it’s used the other way around to introduce variables. In general, say we want to ignore
Xi. Then

P (X\{Xi}) =
∑

xi∈Xi

P (X).

So for example, equation 1 is actually telling us that withX = {X1,X2}

P (X2) = P (X\{X1})

=
∑

x1∈X1

P (x1,X2)

= P (true,X2) + P (false,X2).

This can obviously be iterated for as many RVs as we like, so ifX
′ is the set of random variables

we’re not interested in then

P (X\X′) =
∑

x′∈X′

P (X) .

These notes assume for the most part that RVs are discrete. Everything still applies when continuous
RVs are involved, but sums are then replaced by integrals. For example, we can marginalise the
two-dimensional Gaussian density

p(x1, x2) =
1

2π
exp

(

−
1

2

(

x2
1 + x2

2

)

)

as follows

p(x1) =
1

2π

∫ ∞

−∞
exp

(

−
1

2

(

x2
1 + x2

2

)

)

dx2.

3 Standard trick number 2: you can treat a conjunction of RVs as an
RV

When we consider events such asX1 = true andX2 = four, theconjunction of the events is also an
event. This goes for any number of events, and any number of RVs as well. Why is that interesting?
Well, Bayes’ theorem usually looks like this

P (X|Y ) =
P (Y |X)P (X)

P (Y )
.

However as a conjunction of RVs can be treated as a RV we can also write things like

P (X1,X5|X2,X3,X10) =
P (X2,X3,X10|X1,X5)P (X1,X5)

P (X2,X3,X10)

and Bayes’ theorem still works.
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4 Standard trick number 3: conditional distributions are still distribu-
tions

This is perhaps the point I want to make that’s most often missed: a conditional probability distribu-
tion is still a probability distribution. Consequently the first two tricks extend to them without any
extra work—you simply apply them while leaving the conditioning RVs (the ones on the right hand
side of the| in P (. . . | . . .)) alone. So, for instance, we can write

P (X1|X3) =
∑

x2∈X2

P (X1,X2|X3)

or in general for sets of RVs

P (X|Z) =
∑

y∈Y

P (X,Y|Z) .

Quite often this trick is used tointroduce extra RVs inY rather than eliminate them. The reason for
this is that you can then try to re-arrange the contents of thesum to get something useful. In particular
you can often use the following further tricks.

Just as marginalisation still works for conditional distributions, so do Bayes’ theorem and related
ideas. For example, the definition of a conditional distribution looks like this

P (X|Y ) =
P (X,Y )

P (Y )
(2)

so
P (X,Y ) = P (X|Y )P (Y ).

As the left hand side of this equation is a joint probability distribution, and conjunctions of RVs act
like RVs, we can extend this to arbitrary numbers of RVs to get, for example

P (X1,X2,X3) = P (X1|X2,X3)P (X2,X3)

= P (X1|X2,X3)P (X2|X3)P (X3).

What’s more useful however is to note that Bayes’ theorem is obtained from equation 2 and its twin

P (Y |X) =
P (X,Y )

P (X)

by a simple re-arrangement. How might this work if we have conjunctions of random variables?
Consider

P (X|Y,Z) =
P (X,Y,Z)

P (Y,Z)

and its twin

P (Y |X,Z) =
P (X,Y,Z)

P (X,Z)

both of which follow from the definition of conditional probability. Re-arranging to eliminate the
P (X,Y,Z) gives

P (X|Y,Z) =
P (Y |X,Z)P (X,Z)

P (Y,Z)
.
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We now have two smaller joint distributionsP (Y,Z) andP (X,Z) which we can split to give

P (X|Y,Z) =
P (Y |X,Z)P (X|Z)P (Z)

P (Y |Z)P (Z)

=
P (Y |X,Z)P (X|Z)

P (Y |Z)

or in general, with sets of RVs

P (X|Y,Z) =
P (Y|X,Z)P (X|Z)

P (Y|Z)
. (3)

5 How to (in principle) compute absolutely anything

Say you want to compute a conditional probabilityP (X|Z). By definition

P (X|Z) =
P (X,Z)

P (Z)

and if the complete collection of all the RVs our agent is interested in is{X,Y,Z} then both the
numerator and the denominator can be computed by marginalising the joint distributionP (X,Y,Z).
In fact as the denominator serves essentially just to make the left hand side sum to1 (when we sum
overX) so that it’s a proper probability distribution, we often treat it just as a constant and write

P (X|Z) =
1

Z

∑

y∈Y

P (X,Y,Z) .

The quantityZ is called thepartition function if you’re a physicist orevidence if you’re a computer
scientist, for reasons that will become clear during the lectures.

6 Why multiplication of factors works

This section is really about an algorithm rather than probabilities. We provide a simple explanation
of why the multiplication offactors in the manner suggested in the lecture notes works, and why it
avoids duplicating the computation of sub-expressions.

6.1 Why it works

Let’s drop any reference to probabilities for the moment andjust look at general summations involving
functions. Say you have three finite setsX = {x1, . . . , xp}, Y = {y1, . . . , yq} andZ = {z1, . . . , zr},
and you want to compute a summation like

f(x, y) =
∑

z∈Z

g(x, y, z)h(y, z) (4)

for valuesx ∈ X andy ∈ Y . The sum will look like

f(x, y) = g(x, y, z1)h(y, z1) + · · · + g(x, y, zr)h(y, zr).

In other words, the products you need to compute are the onesfor which values of z coincide. This,
in a nutshell, is what the process of combining factors achieves. In this example, we would write the
factors in the sum as
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x y z Fx(x, y, z)

x1 y1 z1 g(x1, y1, z1)
x1 y1 z2 g(x1, y1, z2)
...

...
...

...
xp yq zr g(xp, yq, zr)

and

y z Fy(y, z)

y1 z1 h(y1, z1)
y1 z2 h(y1, z2)
...

...
...

yq zr h(yq, zr)

.

When the factors are multiplied we match up and multiply the table entries for which variables com-
mon to both have matching values. So for example

x y z Fx,y(x, y, z)

x1 y1 z1 g(x1, y1, z1)h(y1, z1)
x1 y1 z2 g(x1, y1, z2)h(y1, z2)
...

...
...

...
xp yq zr g(xp, yq, zr)h(yq, zr)

.

In order to deal with the summation to form the factorFx,y(x, y) we now form sums of the entries in
Fx,y(x, y, z) over all values forz, so

x y Fx,y(x, y)

x1 y1
∑

z∈Z Fx,y(x1, y1, z)
x1 y2

∑

z∈Z Fx,y(x1, y2, z)
...

...
...

xp yq

∑

z∈Z Fx,y(xp, yq, z)

.

Expanding out one of these summations results in something like

Fx,y(x1, y2) =
∑

z∈Z

g(x1, y2, z)h(y2, z). (5)

Comparing equations 4 and 5 we see that the entries in the factor Fx,y(x, y) are just the values of the
summation for each possible pair of valuesx andy.

6.2 The relationship to probabilities

So: the tabular process using factors is just a way of keepingtrack of the values needed to compute the
sum. In the probabilistic inference algorithm the functions f , g, h and so on are all just (conditional)
probability distributions, and because we’re dealing withthe decomposition

Pr(X1, . . . ,Xn) =

n
∏

i=1

Pr(Xi|parents(Xi))

on a directed, acyclic graph we start off with a factor for each RV, and each time we get to a summation
we sum out the corresponding variable. (The above example does not have this structure, which is
why the summing out notationFx,y,z does not appear, but the process is identical.)
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6.3 Why it avoids duplication

Reverting now to probabilities, say we have a Bayes network that represents the decomposition

Pr(X,Y1, Y2, E1, E2) = Pr(E1|Y1, Y2) Pr(E2|Y2) Pr(Y2|X) Pr(X) Pr(Y1).

(Exercise: draw it.) Now we attempt to compute the inference

Pr(X|e1, e2) =
1

Z
Pr(X)

∑

y1∈Y1

Pr(Y1)
∑

y2∈Y2

Pr(Y2|X) Pr(e1|Y1, Y2) Pr(e2|Y2).

The repetition of computations arises in summations like this because—handled in the naive way
using recursive depth-first evaluation—the summation

∑

y2∈Y2

Pr(Y2|X) Pr(e1|Y1, Y2) Pr(e2|Y2)

will involve computing the productPr(Y2|X) Pr(e2|Y2) for each value ofY1. This problem will
repeat itself for each value ofX. By computing and storing each of the products needed only once
the method based on factors avoids this.

7 Further tricks

We now look at some further simple manipulations that are needed to understand the application of
Bayes’ theorem to supervised learning. Once again, random variables are assumed to be discrete, but
all the following results still hold for continuous random variables, with sums replaced by integrals
where necessary.

7.1 Some (slightly) unconventional notation

In the machine learning literature there is a common notation intended to make it easy to keep track
of which random variables and which distributions are relevant in an expression. While this notation
is common within the field, it’s rarely if ever seen elsewhere; it is however very useful.

A statistician would define theexpected value of the random variableX as

E [X] =
∑

x∈X

xP (x)

or when we’re interested in the expected value of a function of a random variable

E [f(X)] =
∑

x∈X

f(x)P (x)

wheref is some function defined onX. Here, it is implicit that the probability distribution forX
is P . With complex expressions involving combinations of functions defined on random variables
with multiple underlying distributions it can be more tricky to keep track of which distributions are
relevant. Thus the notation

Ex∼P (X) [f(X)]
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is intended to indicate explicitly that the distribution ofX is P , in situations where we don’t write out
the full definition

Ex∼P (X) [f(X)] =
∑

x∈X

f(x)P (x) .

to make it clear. The same notation is also often applied to statements about probabilities rather than
expected values.

7.2 Expected value and conditional expected value

The standard definition of the expected value of a functionf of a random variableX is

Ex∼P (X) [f(X)] =
∑

x∈X

f(x)P (x)

as already noted. We can also define theconditional expected value of f(X) givenY as

Ex∼P (X|Y ) [f(X)|Y ] =
∑

x∈X

f(x)P (x|Y ) .

Now here’s an important point:the value of this expression depends on the value of Y . Thus, the
conditional expected value is itself a function of the random variableY . What is its expected value?
Well

Ey∼P (Y )

[

Ex∼P (X|Y ) [f(X)|Y ]
]

=
∑

y∈Y

Ex∼P (X|Y ) [f(X)|Y ]P (y)

=
∑

y∈Y

∑

x∈X

f(x)P (x|y)P (y)

=
∑

y∈Y

∑

x∈X

f(x)P (x, y)

=
∑

x∈X

f(x)
∑

y∈Y

P (x, y)

=
∑

x∈X

f(x)P (x)

= Ex∼P (X) [f(X)]

or in the more usual notation
E [E [f(X)|Y ]] = E [f(X)] .

7.3 Expected value of the indicator function

For anyb ∈ {true, false} the indicator function I is defined as

I(b) =

{

1 if b = true
0 if b = false

.
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Let f be a Boolean-valued function on a random variableX. Then

Ex∼P (X) [I(f(x))] =
∑

x∈X

I(f(x))P (x)

=
∑

x∈X,f(x) is true

I(f(x))P (x) +
∑

x∈X,f(x) is false

I(f(x))P (x)

=
∑

x∈X,f(x) is true

P (x)

= Px∼P (x) [f(x) = true]

.

In other words,the probability of an event is equal to the expected value of its indicator function.
This provides a standard method for calculating probabilities by evaluating expected values. So for
example if we roll a fair die and considerf(X) to be true if and only if the outcome is even then

P (outcome is even) = E [I(f(X))] = 1/6 + 1/6 + 1/6 = 1/2

as expected.
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