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Syllabus part I: advanced planning

New things to be looked at include some more advanced miteriplanning
algorithms:

e Heuristics and GraphPlan:incorporating heuristics into partial-order plan-
ning, planning graphs, the GraphPlan algorithm. [1 ledture

e Planning using propositional logic:representing planning problems using
propositional logic, and generating plans using satidftatsolvers. [1 lec-
ture]

e Planning using constraint satisfactionepresenting planning problems so that
they can be solved using constraint satisfaction solvéredture]

There is no warranty attached to the stated lecture timings.

Syllabus part II: uncertainty in Al

We then delve into some more modern material which takesumtaaf uncer-
tainty:

e Uncertainty and Bayesian networkseview of probability as applied to Al,
Bayesian networks, inference in Bayesian networks usittly éxact and ap-
proximate techniques, other ways of dealing with uncetyaid lectures]

o Utility and decision-makingmaximising expected utility, decision networks,
the value of information. [1 lecture]

Please read theupplementary notes on probabilttigndout.

Syllabus part lll: uncertainty and time

We then look at how uncertain reasoning and learning cangiae whertimeis
to be taken into account:
e Markov processedransition and sensor models.

e Inferencein temporal models: filtering, prediction, smoothing andliing the
most likely explanation.

e Hidden Markov modeld2 lectures]




Syllabus part IV: learning

Finally, we apply probability tcsupervised learningo obtain [1 lecture] more
sophisticated models of learning.

e Bayes theoreras applied to supervised learning. [1 lecture]
e Themaximum likelihoodndmaximum a posteriotiypotheses. [1 lecture]

e Applying the Bayesian approacheural networks[3 lectures]
We finish the course by taking a brief lookratnforcement learning

e How can we learn fromewards and punishmerits
e The Q-learningalgorithm. [1 lecture]

Reinforcement learning can be thought of as combining mdrthe elements
covered in this course and in Al |, and thus provides a napleae to stop.

Books
Once again, the main single text book for the course is:

o Artificial Intelligence: A Modern ApproachStuart Russell and Peter Norvig,
Prentice Hall.

There is an accompanying web site at
ai ma. cs. ber kel ey. edu

Either the second or third edition should be fine, but avoafitst edition as it
does not fit this course so well.

Chapter numbers given in these notes refer to the thirdoediti

Books

For some of the new material on neural networks you might Eteoto take a
look at:

e Pattern Recognition and Machine Learnir@hristopher M. Bishop. Springer,
2006.

For some of the new material on reinforcement learning yaghtiike to consult:
e Machine Learning Tom Mitchell. McGraw Hill, 1997.
For further material on planning try:

e Automated Planning: Theory and Practicéalik Ghallab, Dana Nau and
Paolo Traverso. Morgan Kaufmann, 2004.

Dire Warning
DIRE WARNING

This course contains quite a lot of:

1. Probability

2. Matrix algebra

3. Calculus

As | am anevil and vindictive persomwho likes to beunkind to kittensl will

assume that you know everything on these subjects that wasezbin earlier
Courses.

If you don't it is essentialthat you re-visit your old notes and make sure that
you're at home with that material.

YOU HAVE BEEN WARNED




How’s your maths?

To see if you're up to speed on the maths, have a go at the folipw

/ exp(—2?) da

oo

Evaluate the integral

Hint: this is a pretty standard result. Square the integral andgeghéo polar
coordinates.

How's your maths?

Following on from that, here’s something a bit more challagg

Evaluate the integral

/ / exp (—; (XTEx+xTa+/5)) dxy - - dz,

whereX is a symmetria: x n matrix with real elementgy € R", § € R and
x! = [1"1 To + - zn] cR"
(This second one is a bit tricky. I'll show you the answer fate)
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Planning Il
We now examine:
e The way in whichbasic heuristicsnight be defined for use in planning prob-
lems.

e The construction oplanning graphsand their use in obtaining more sensible
heuristics.

e Planning graphs as the basis of tBephPlanalgorithm.
e Planning usingpropositional logic

e Planning usingonstraint satisfaction

Reading: Russell and Norvig, relevant sections of chapter 11.
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A quick review

We used the following simple example problem.

The intrepid little scamps in th€ambridge University Roof-Climbing Society
wish to attach an inflatable gorilla to the spire of a famoudiége. To do this
they need to leave home and obtain:

¢ An inflatable gorilla these can be purchased from all good joke shops.
e Somerope available from a hardware store.

o A first-aid kit also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning their jolly escapade?
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The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” 97
States:areconjunctionsof ground literalswith no functions
At (Hone) A —Have(Gorill a)
A —~Have(Rope)
A —-Have(Kit)

Goals: are conjunctionsof literals where variables are assumed existentially
quantified.
At (z)ASel I s(z,Gorilla)

A planner finds a sequence of actions that makes the goal traa performed.
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An example of partial-order planning

Here is the initial plan:

Start

At (Hone) ASel ls(JS, G AlSel I s(HS, R) ASel | s(HS, FA)

At (Hone) A Have( G AHave(R) AHave(FA)

Fi ni sh

Thin arrows denote ordering.
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An example of partial-order planning

There are two actions available:

At (z) At (z),Sel | s(z,y)
Go(y) Buy ()
At (y), At (z) Have(y)
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An example of partial-order planning

Start ¢ A ()
At (Horre) At(l—bne).SeIIs(JS,@Ee . R) . Sel | s(HS, FA) _
©09) / SAt (2)
At (JS),Sel 15(JS, 0 Sel I s(HS, R) , At (HS)
Buy (0O Buy(R)

At (Home

,Have( G ,Have(R) . Have(FA)

Fini sh

TheAt (HS) precondition is easy to achieve.

But if we introduce a causal link frot ar t to Go( HS) then we risk invalidating
the precondition foiGo( JS) .
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An example of partial-order planning

The planner could backtrack and try to achieve Ahér) precondition using the
existingGo(JS) step.

Start AL(I9)
At (Hone) At (Hone) , Sel | s(JSY .‘Se , R) . Sel | s(HS, FA) Go(HS)
Go(JS) -
B - / —At (JS)
At (JS),Sel 1s(JS, G /,,/"’///S/ells(HS, R) , At (HS)
Buy(9 | Buy(R)

/

At (Hone) ,Have( G ,Have(R),Have( FA)

Fi ni sh

This involves a threat, but one that can be fixed using pramoti
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Using heuristics in planning

We found in looking at search problems theguristicswere a helpful thing to
have.

Note that now:

e There is no simple representation détate

e Consequently it is harder to measure the distancegimea

Defining heuristics for planning is therefore more difficilian it was for search
problems.
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Using heuristics in planning

We can quickly suggest some possibilities.

For example

h = number of unsatisfied preconditions
or

h =number of unsatisfied preconditions
— number satisfied by the start state

These can lead to underestimates or overestimates:

e Underestimates if actions can affect one another in ural@simways.
e Overestimates if actions achieve many preconditions.
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Using heuristics in planning

We can go a little further by learning fro@onstraint Satisfaction Problenzsd
adopting themost constrained variableeuristic:

e Prefer the precondition satisfiable in the smallest numberags.
This can be computationally demanding but two special casehkelpful:

e Choose preconditions for which no action will satisfy them.

e Choose preconditions that can only be satisfied in one way.

20




Planning graphs
Planning graphs can be used:

e To compute more sensible heuristics.

e To generate entire plans.

Also, planning graphs amasy to construct

They apply only when it is possible to work entirely usiprgpositionalrepresen-
tations of plans.

Luckily, STRIPS can always be propositionalized...
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Planning graphs

For example the triumphant return of the gorilla-purchasing roofxdtiers...

Predicate Propositional
At () At (Hone) At (JS)
Go(y) ——— G (JS) Go(HS)

At (y). At () At (JS), ~At (Home) At (HS), -At (JS)
At (Home)
®(HS) and so on...

At (HS), ~At (Horre)

At (3S)

Go(Horre)

At (Hone), -At (JS)

22

Planning graphs
A planning graph is constructed in levels:

e Level0 corresponds to thstart state

o At each level we keeppproximatetrack of all things thatould be true at the
corresponding time.

e At each level we keeppproximaterack of what actionsould be applicable
at the corresponding time.

The approximation is due to the fact that not all conflictsnesn actions are
tracked.Sa

e The graph camnderestimatéow long it might take for a particular proposi-
tion to appear, and therefore . ..

e ... a heuristic can be extracted.
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Planning graphs: a simple example

Our intrepid student adventurers will of course need to teflaeirgorilla before
attaching it to alistinguished roof It has to be purchased before it can be inflated.

Start state Empty.
We assume that anything not mentioned in a state is falseheSstate is actually
—Have(Gorilla)and-l nflated(Corilla)

Actions
—Have(Gorill a) Have(Goril | a)
Buy(Gorilla) Inflate(Gorilld)
Have(Gorill a) Inflated(Gorilla)

Goal Have(Goril |l a)andl nfl at ed(Coril | a).

24




Planning graphs

So Aoy S A Si
-HG) - -H©G) - -HG)
Buy(G)
I HG ——
Buy(G) HO o0 |
= 1 (G ——
nf@ —— |
-1 (G . -1 (G . -1 (G
Describe start All actions available in All possibilities for ~ All actions that might All possibilities for
state. start state. what might be the  be available at time what might be the
case at timd. 1. case at time.

[0 = apersistence actier-what happens if no action is taken.
An action levelA; containsall actions thatould happen given the propositions .

Mutex links

We also record, usinghutual exclusion (mutex) linkghich pairs of actions could
not occur together.

Mutex links 1 Effects are inconsistent.

|

-H(G) —-H(G)

The effect of one action negates the effect of another.
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Mutex links Mutex links
Mutex links 2 The actions interfere. Mutex links 3 Competing for preconditions.
Si Ay Si Sy Ay
-H(G) £}
nf (G O \I:ﬂ
n Buy(G)J
-1 (G {1 -1 (G HG < V>
I nf (G)
The effect of an action negates the precondition of another.
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The precondition for an action is mutually exclusive witke threcondition for
another. (See next slide!)

28




Mutex links

A state levelS; containsall propositions thatould be true, given the possible
preceding actions.

We also use mutex links to record pairs that can not be trual&nmeously:

Possibility 1 pair consists of a proposition and its negation.
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Mutex links

Possibility 2 all pairs of actions that could achieve the pair of proposg are
mutex.

Ay Si

W -H©G)

.
@\\> HGE
o—7 |
L 15—
Inf(G)}// ©

The construction of a planning graph is continued until tdentical levels are
obtained.
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Planning graphs

So Ay Sy Ay Sa
-HO) O -H©) 0 SHC)
-
Buy (G) |
uy (G) ———L W\
— |
Buy (G HG) C +—7
(©] (
L 15—
\{ Inf (G ’// el
-1© O -1(© 0 -1(9
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Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

e Any proposition not appearing in the final level hafinite costandcan never
be reached

e Thelevel cosbf a proposition is the level at which it first appebrg this may
be inaccurate as several actions can apply at each levehasncbist does not
count thenumber of actions(It is howeveradmissible)

e A serial planning graphincludes mutex links between all pairs of actions ex-
cept persistence actions.

Level cost in serial planning grapltan be quite a good measurement.
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Obtaining heuristics from a planning graph

How about estimating the cost to achievedadlectionof propositions?
e Max-level use the maximum level in the graph of any proposition in #ite s
Admissible but can be inaccurate.

e Level-sum use the sum of the levels of the propositions. Inadmisdioke
sometimes quite accurate if goals tend to be decomposable.

e Set-leveluse the level at whichll propositions appear with none being mutex.
Can be accurate if goals tendtto be decomposable.
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Other points about planning graphs

A planning graph guarantees that:

1. If a proposition appears at some level, theaybe a way of achieving it.
2.If a proposition doesot appear, it camot be achieved.

The first point here is a loose guarantee becausepaitg of items are linked by
mutex links.

Looking at larger collections can strengthen the guarabtgen practice the gains
are outweighed by the increased computation.
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Graphplan

The GraphPlanalgorithm goes beyond using the planning graph as a source of
heuristics.

Start at level O;
while(true) {
if (all goal propositions appear in the current |evel
AND no pair has a mutex link) {

attenpt to extract a plan;

if (a solution is obtained)
return the solution;

else if (graph indicates there is no solution)
return fail;

el se
expand the graph to the next |evel;

}
}

We extract a plandirectly from the planning graph. Termination can be proved
but will not be covered here.
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Graphplan in action

Here, at levelsS, and.S; we do not have bothl( G andl ( G) available with no
mutex links, and so we expand first$g and then taSs.

So Ao S1 Ay Sy

“HG) 0 “HOG) N “HG)
Buy(© Nry— | HoY-

Buy(G) HG) C—7 ]
Bt ‘

L 10—

\{ Inf (G }// "

-1 (G O -l (© O -1(9

At S, we try to extract a solution (plan).
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Extracting a plan from the graph

Extraction of a plan can be formalised asemrch problem
Statescontain devel and a collection ofinsatisfied goal propositions

Start statethe current final level of the graph, along with the relevaslgropo-
sitions.

Goal: a state at leveb), containing the initial propositions.
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Extracting a plan from the graph

Actions: For a state5 with level S;, a valid action is to select any s&t of actions
in A,_; such that:

1. no pair has a mutex link;

2. no pair of their preconditions has a mutex link;

3. the effects of the actions i achieve the propositions isi.
The effect of such an action is a state having le¥/el, and containing the pre-
conditions for the actions iX.

Each action has a cost of
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Graphplan in action

So Ay S A, S,

-HO) ! -HO) | -H©)

-
Buy(G)J | HoY——

— |
(¢} H(G) —
Buy(
[ o (c e
\{ Inf (G) }/
-1 (Q 1 -1 (G {1 -1 (9

Start state

Action: Buy(Q Action: | nf (G) andO
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Heuristics for plan extraction

We can of course also appheuristicsto this part of the process.

For example, when dealing withst of propositions

e Choose the proposition havimgaximum level codirst.

e For that proposition, attempt to achieve it using the adkwmwhich themaxi-
mum/sum level cost of its preconditions is minimum
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Planning Ill: planning using propositional logic

Last year we saw that plans might be extracted from a knowledge vidgheorem
proving, usingfirst order logic (FOL)andsituation calculus

BUT: this might be computationally infeasible for realistioptems.

Sophisticated techniques are available for tessatsfiability in propositional
logic, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence hdvinfprm

description of start state
A descriptions of the possible actions
A description of goal

a1

Propositional logic for planning

We attempt to construct this sentence such that:

o If M is a model of the sentence théfi assignsT to a proposition if and only
if it is in the plan.

e Any assignment denoting an incorrect plan will not be a madethe goal
description will not beT .

e The sentence is unsatisfiable if no plan exists.
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Propositional logic for planning

Start state
S =At (a,spire) AAt Db, ground)
A —At °(a, gr ound) A -At (b, spi re)

The two climbers want to swap places...

Remember that an expression suchAnd(a, spi r e) is aproposition The su-
perscripted number now denotes time.
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Propositional logic for planning

Goal
G =At'(a,ground) A At '(b,spire)
A —At ‘(a,spi re) A -At (b, gr ound)

Actions can be introduced using the equivalent of successor-axatens
At '(a,gr ound) «

(At °(a, gr ound) A (At °(a, gr ound) A Move’(a, gr ound, spi r e)))

v (At °(a,spi re) A Move’(a,spire,ground))

(1)

Denote byA the collection of all such axioms.
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Propositional logic for planning

We will now find thatS A AAG has a model in whicivove®(a, spi r e, gr ound)
andMove®(b, gr ound, spi r e) are T while all remaining actions arg.

In more realistic planning problems we will clearly not knowadvance at what
time the goal might expect to be achieved.

We therefore:

e Loop through possible final timés.
e Generate a goal for tini€ and actions up to timé'.
e Try to find a model and extract a plan.

e Until a plan is obtained or we hit some maximum time.
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Propositional logic for planning

Unfortunately there is a problem—we may, if considerablee déa not applied,
also be able to obtain less sensible plans.

In the current example

Move’(b,ground,spire) =T
Move'(a,spire,ground) =T

Move’(a,ground,spire) =T

is a model, because the successor-state axiom (1) does faat ipreclude the
application ofvbve’(a, gr ound,spi re).

We need grecondition axiom
Move'(a,ground,spire) — At ‘(a,gr ound)

and so on.
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Propositional logic for planning

Life becomes more complicated still if a third location isled:hospi t al .
Move'(a,spi re,ground) A Move’(a, spi re, hospi tal)

is perfectly valid and so we need to specify that he can’t movewo places
simultaneously

—-(Movei(a,spire,ground) A Movei(a,spire, hospital))
—-(Movei(a,ground,spi re) A Move‘(a,ground, hospi tal ))

and so on.
These ar@action-exclusioraxioms.

Unfortunately they will tend to produdetally-orderedrather tharpartially-ordered
plans.
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Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates tleeteft precondition of
the other.
2. Or, specify that something can’t be in two places sim@tarsly

Vo, il 1,12 11412 — —(Ati(z,] 1) AAt (2,1 2))

This is an example of astate constraint

Clearly this process can become very complex, but thereeafeiques to help
deal with this.
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Planning IV: planning using constraint satisfaction
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Review of constraint satisfaction problems (CSPs)

We have:

e A set ofn variablesVy, Vs, ..., V.
e For eachV; adomainD; specifying the values thaf can take.
e A set ofm constraintsC, Cs, ..., C,,.

Each constraint’; involves a set of variables and specifiesaiowable collection
of values

¢ A stateis an assignment of specific values to some or all of the vimsab
e An assignment isonsistentf it violates no constraints.

e An assignment isompletef it gives a value to every variable.

A solutionis a consistent and complete assignment.
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Example

We will use the problem ofolouring the nodes of a grapds a running example.

Each node corresponds tovariable We have three colours and directly con-
nected nodes should have different colours.

Caution required:later on, edges will have a different meaning.
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Example
This translates easily to a CSP formulation:

e The variables are the nodes
Vi = node:

e The domain for each variable contains the values black, meddcgan
D;={B,R,C}

e The constraints enforce the idea that directly connectelg@sonust have dif-
ferent colours. For example, for variablésandV; the constraints specify

(B, R),(B,C),(R, B),(R,C),(C,B), (C, R)

e VariableV; is unconstrained.
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Different kinds of CSP

This is an example of the simplest kind of CSP: itliscretewith finite domains
We will concentrate on these.

We will also concentrate obinary constraintsthat is, constraints betwegmirs
of variables

e Constraints on single variablessrary constraints-can be handled by ad-
justing the variable’s domain. For example, if we don’t winto bered, then
we just remove that possibility fror;.

e Higher-order constraint@pplying to three or more variables can certainly be
considered, but...

e ...when dealing with finite domains they can always be convedeskts of
binary constraints by introducing extaaixiliary variables

How does that work?

53

The state-variable representation

Another planning language: tlstate-variable representation
Things of interest such as people, places, objettare divided intadomains

D; = {climberl, climber2}
Dy = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope, inflatableGorilla}

Part of the specification of a planning problem involvesistatvhich domain a
particular item is in. For example

Di(climberl)
and so on.
Relations and functions have arguments chosen from unichese domains.
above(z,y) C D" x DEPve

is a relation. Thé>2*°e are unions of one or mor®;.
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The state-variable representation

The relationabove is in fact arigid relation (RR) as it is unchanging: it does not
depend uposstate (Remembefluentsin situation calculus?)

Similarly, we haveunctions
at(xy,s) : DI x S — D*,

Here,at(z, s) is astate-variable The domainD3* and rangeD?* are unions of
one or moreD;. In general these can have multiple parameters

sv(Z1, ..., Zn, §) DIV X - X DY x S — D,
A state-variable denotes assertions such as
at(gorilla,s) = jokeShop
wheres denotes atateand the sef of all states will be defined later.

The state variable allows things such as locations to chamaggin, much like
fluentsin the situation calculus.

Variables appearing in relations and functions are consitito betyped
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The state-variable representation

Note:

e For properties such aslacationa function might be considerably more suit-
able than a relation.

e For locations, everything has to bBemewherand it can only be irone place
atatime

So a function is perfect and immediately solves some of thblpms seen earlier.
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The state-variable representation

Actionsas usual, have mame aset of preconditionand aset of effects

e Namesare unique, and followed by a list of variables involved ia #ttion.
e Preconditionsare expressions involving state variables and relations.
o Effectsare assignments to state variables.

For example:
buy(z,y,1)
Preconditionsat(z, s) = [
sells(l,y)
has(y, s) =1
Effects has(y,s) =z
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The state-variable representation

Goalsare sets oéxpressioninvolving state variables

For example:

Goal:

at(climber, s) = home
has(rope, s) = climber
at(gorilla,s) = spire

From now on we will generally suppress the statehen writing state variables.
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The state-variable representation

We can essentially regardstateas just a statement of what values the state vari-
ables take at a given time.

Formally:

e For each state variablev we can consider all ground instances such as—

sv(climber, rope)—with arguments that areonsistenwith the rigid rela-
tions

Define X to be the set of all such ground instances.
¢ A states is then just a set
s={(v=c)lve X}
wherec is in the range of.
This allows us to define theffect of an action

A planning problem also needsstart states,, which can be defined in this way.
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The state-variable representation

Considering all thground actions consistent with the rigid relations

e An action isapplicable ins if all expressions v=c appearing in the set of pre-
conditions also appear in

Finally, there is a functiory that maps a state and an action to a new state

v(s,a) = ¢
Specifically, we have
V(s,a) = {(v=¢)lv € X}
where either is specified in an effect af, or otherwises = cis a member of.

Note: the definition ofy implicitly solves theframe problem.

60




The state-variable representation

A solutionto a planning problem is a sequengg, ay, . .., a,) of actions such
that...
e ay is applicable insy and for eachi, q; is applicable ins; = v(s;_1,a;_1).
e For each goay we have
g € V(Sn; an).
What we need now is a method flstansforminga problem described in this lan-
guage into a CSP.

We'll once again do this for a fixed upper liniit on the number of steps in the
plan.
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Converting to a CSP

Step 1:encodeactionsasCSP variables
For each time stepwhere) < ¢ < T — 1, the CSP has a variable
action’
with domain
Dpaction’ _ {a]a is the ground instance of an action {none}

Example: at some point in searching for a plan we might attempt to fired th
solution to the corresponding CSP involving

action’ = attach(inflatableGorilla, spire)

WARNING:be careful in what follows to distinguish betwestate variables, ac-
tions etcin the planning problem aneariablesin the CSP.
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Converting to a CSP

Step 2:encodeground state variableasCSP variableswith a complete copy of
all the state variablefor each time step

So, for eacht where0 < t < T we have a CSP variable
svi(cr, ... cn)

with domainDs"i. (That is, thedomainof the CSP variable is theange of the
state variable.)

Example: at some point in searching for a plan we might attempt to fired th
solution to the corresponding CSP involving

location®(climberl) = hospital.
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Converting to a CSP

Step 3: encode thepreconditions for actions in the planning probless con-
straints in the CSP problem

For each time stepand for each ground actiaticy, . . . , ¢,,) with argumentgon-
sistent with the rigid relations in its preconditians

For a precondition of the formav; = v include constraint pairs
(action’ = a(cy, ..., ),
svi =)
Example:consider the actiobuy(z, y, () introduced above, and having the pre-
conditionsat(z) = [, sells(l,y) andhas(y) = [.
Assumesells(y,!) is only true for
| = jokeShop

and

y = inflatableGorilla
(it's a very strange town) so we only consider these values &mdy. Then for
each time stepwe have the constraints...
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Converting to a CSP

action’ = buy(climberl, inflatableGorilla, jokeShop)
paired with
at'(climberl) = jokeShop
action’ = buy(climberl, inflatableGorilla, jokeShop)
paired with
has!(inflatableGorilla) = jokeShop
action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
at’(climber2) = jokeShop
action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
has’(inflatableGorilla) = jokeShop
and so on...
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Converting to a CSP

Step 4:encode theffects of actions in the planning problexsconstraints in the
CSP problem

For each time stepand for each ground actiaticy, . . . , ¢,,) with argumenton-
sistent with the rigid relations in its preconditians
For an effect of the fornav;, = v include constraint pairs
(action’ = a(cy,...,cn),
V§+1

s =)

Example:continuing with the previous example, we will include coastts

action’ = buy(climberi, inflatableGorilla, jokeShop)
paired with
has'"!(inflatableGorilla) = climber1
action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
has’™!(inflatableGorilla) = climber2
and so on...
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Converting to a CSP

Step 5:encode thdrame axiomsasconstraints in the CSP problem
An action must not change things not appearing in its effetts
For:

1. Each time step.

2. Each ground actioa(cy, . . ., ¢,) with argumentsonsistent with the rigid re-
lations in its preconditions

3. Eachsv; thatdoes not appear in the effectsagfand eachy € D=vi

include in the CSP the ternary constraint

(action’ = a(cy,...,cn),
svi =,
Vit =

s v)
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Finding a plan

Finally, having encoded a planning problem into a CSP, weestiie CSP.
The scheme has the following property:

A solution to the planning problem with at mdssteps exists if and only if there
is a a solution to the corresponding CSP

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the valuegjassito thexction’
variables in the solution of the CSP.

It is also the case that:

There is a solution to the planning problem with at mbBstteps if and only if there
is a solution to the corresponding CSP from which the sofutian be extracted
in this way

For a proof see:
Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmai@4 20
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Uncertainty I: Probability as Degree of Belief

We now examine:

e How probability theorymight be used to represent and reason with knowledge

when we areuncertainabout the world.

e How inferencein the presence of uncertainty can in principle be performed

using only basic results along with thdl joint probability distribution
e How this approacilfails in practice.

¢ How the notions ofndependencandconditional independenamay be used
to solve this problem.

Reading:Russell and Norvig, chapter 13.
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Uncertainty in Al

The (predominantly logic-based) methods covered so fae hasorted shortcom-
ings:

e Limited epistemological commitmenttrue/false/unknown.

e Actions are possible whesufficient knowledges available...

e ...but this is not generally the case.

e In practice there is a need to cope withcertainty

For example in the Wumpus World:

¢ We can not make observations further afield than the curoeatity.

e Consequently inferences regarding pit/wumpus locattowill not usually be
possible.
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Uncertainty in Al
A couple of more subtle problems have also presented theessel

e The Qualification Problem:it is not generally possible to guarantee that an
action will succeed—only that it will succeed ifiany other preconditions
do/don’t hold.

e Rational actiondepends on thékelihood of achieving different goals, and
theirrelative desirability
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Logic (as seen so far) has major shortcomings

An example:
Va synpt om(z,t oot hache) — probl emx,cavity)
This is plainly incorrect. Toothaches can be caused by ghatlger than cavities.

Yz synpt om(z,t oot hache) —pr obl em(z,cavi ty)v
pr obl emx,abscess)v
probl emz,gum di sease)V

BUT:

e |t is impossible to completie list.

e There’s no clear way to take account of tledative likelihoodsof different
causes.
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Logic (as seen so far) has major shortcomings

If we try to make acausal rule
Vx pr obl em(z,abscess) — synpt om(z,t oot hache)
it's still wrong—abscesses do not always cause pain.
We need further information in addition to
pr obl emz,abscess)

and it's still not possible to do this correctly.
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Logic (as seen so far) has major shortcomings

FOL can fail for essentially three reasons:

1. Lazinessit is not feasible to assemble a set of rules that is suffiljienthaus-
tive.

If we could, it would not be feasible to apply them.

2. Theoretical ignoranceinsufficient knowledgeexiststo allow us to write the
rules.

3. Practical ignorance:even if the rules have been obtained there may be insuf-
ficient information to apply them.

Instead of thinking in terms of thiguth or falsity of a statement we want to deal
with an agent'slegree of beliefn the statement.

e Probability theoryis the perfect tool for application here.

e Probability theoryallows us tosummarisghe uncertainty due to laziness and
ignorance.
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An important distinction

There is a fundamental difference betwgeabability theoryandfuzzy logic

e When dealing with probability theory, statements remaifact eithertrue or
false

e A probability denotes an agentiegree of beliebne way or another.

e Fuzzy logic deals witliegree of truth

In practice the use of probability theory has proved speitsaly successful.
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Belief and evidence

An agent’s beliefs will depend on what it hpsrceived probabilities are based
on evidenceand may be altered by the acquisition of new evidence:

e Prior (unconditional) probabilitydenotes a degree of belief in the absence of
evidence.

e Posterior (conditional) probabilitylenotes a degree of belief after evidence is
perceived.

As we shall seBayes’ theorens the fundamental concept that allows us to update
one to obtain the other.
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Making rational decisions under uncertainty

When usindogic, we concentrated on finding an action sequence guaranteed to
achieve a goal, and then executing it.

When dealing withuncertaintywe need to definpreferencesmong states of the
world and take into account th@obability of reaching those states.

Utility theory is used to assign preferences.
Decision theorycombines probability theory and utility theory.

A rational agent should act in order tnaximise expected utility

7

Probability

We want to assign degrees of belief to propositions aboutté.
We will need:
e Random variablesvith associatedlomains—typically Boolean, discrete, or
continuous.
¢ All the usual concepts—events, atomic events, stts
e Probability distributions and densities.
e Probability axioms (Kolmogorov).

e Conditional probability and Bayes’ theorem.

So if you've forgotten this stuff now is a good time to re-reéad
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Probability
The standard axioms are:

e Range
0<Pr(z) <1

e Always true propositions

Pr(al ways true proposition)=1
o Always false propositions

Pr(al ways fal se proposition)=0

e Union
Pr(z Vy) = Pr(z) + Pr(y) — Pr(z A y)
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Origins of probabilities |

Historically speaking, probabilities have been regarded number of different
ways:

e Frequentist:probabilities come from measurements.

e Objectivist: probabilities are actual “properties of the universe” vhfee-
guentist measurements seek to uncover.
An excellent example: quantum phenomena.
A bad example: coin flipping—the uncertainty is due to ourartainty about
the initial conditions of the coin.

e Subjectivist:probabilities are an agent’s degrees of belief.
This means the agent is allowed to make up the numbers!
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Origins of probabilities 11

Thereference class probleneven frequentist probabilities are subjective.

Example: Say a doctor takes a frequentist approach to diagnosis. >&imeirmes
a large number of people to establish the prior probabilitywleether or not they
have heart disease.

To be accurate she tries to measure “similar people”. (Shes&fior example that
gender might be important.)

Taken to an extremeall people ardifferentand there is therefore neference
class
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Origins of probabilities 111

Theprinciple of indifferencéLaplace).
e Give equal probability to all propositions that are syritadty symmetric with
respect to the available evidence.

¢ Refinements of this idea led to the attempted developmentloyap and oth-
ers ofinductive logic

e The aim was to obtain the correct probability of any proposifrom an arbi-
trary set of observations.
It is currently thought that no unique inductive logic exist

Any inductive logic depends on prior beliefs and the effecthese beliefs is
overcome by evidence.
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Prior probability
A prior probability denotes the probability (degree of belief) assigned to pgsro
sitionin the absence of any other evidence

For example
Pr(Cavity =true)=0.05

denotes the degree of belief that a random person has a tefiye we make
any actual observation of that person

To keep things compact, we will use
Pr(Cavity)
to denote the entire probability distribution of the randesmiableCavi ty.

Instead of
Pr(Cavity =true)=0.05

Pr(Cavity =fal se) =0.95

write
Pr(Cavi ty) = (0.05,0.95)
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Notation
A similar convention will apply for joint distributions. Faexample, ifDecay
can take the valuesever e, noder at e or| owthen
Pr(Cavi ty,Decay)
is a2 by 3 table of numbers.

sever e |npoderate|l ow
true 0.26 0.1 0.01
false| 0.01 0.02 0.6

Similarly
Pr(true,Decay)

denotess numbersetc
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The full joint probability distribution Conditional probability

The full joint probability distributionis the joint distribution ofall random vari-

We use theconditional probability
ables that describe the state of the world.

Pr(zly)
This can be used to answany query

to denote the probability that a propositiemolds given thaall the evidence we

(But of course life’s not really that simple!) have so faiis contained in propositiop.
From basic probability theory

Prlely) = “priet

Conditional probability isiot analogous tdogical implication
e Pr(z|y) = 0.1 doesnotmean that ify is true therPr(z) = 0.1.
e Pr(x) is aprior probability.

e The notatiorPr(z|y) is for use whery is theentire evidence
e Pr(z|y A z) might be very different.
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Using the full joint distribution to perform inference Using the full joint distribution to perform inference

We can regard the full joint distribution askaowledge base The process is nothing more than the application of basidtees

We want to use it to obtain answers to questions. o SuMm atomic events:

cP -CP Pr(HDV CP) =Pr(HD A CP A HBP)
HBP —HBP | HBP —-HBP + Pr(HDA CP A —=HBP)
HD |0.09 0.05/0.07 0.01 + Pr(HD A =CP A HBP)
—HD|0.02 0.08|0.03 0.65 + Pr(HD A =CP A —=HBP)
We'll use this medical diagnosis problem as a running exampl + Pr(=HDA CP A HBP)
+ Pr(—=HD A CP A —HBP)
e HD=Heart di sease =0.09+0.0540.07 + 0.01 4+ 0.02 + 0.08
e CP = Chest pain = 0.32

e HBP = Hi gh bl ood pressure
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e Marginalisation: ifA and B are sets of variables then

Pr(A) = Pr(Anb) = Pr(Alp) Pr(b)
b b
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Using the full joint distribution to perform inference

Usually we will want to compute theonditional probabilityof some variable(s)
givensome evidence

For example
Pr(HD A HBP) 0.09 + 0.07
Pr(HD/HBP) = = =0.76
+(HD[HEP) Pr(HBP) 0.09 + 0.07 + 0.02 + 0.03
and
Pr(—HD A HBP) 0.02 4 0.03
Pr(—HD|HBP) = = —=0.24
r(~HDIHEP) Pr(HBP) 0.09 + 0.07 + 0.02 + 0.03

Using the full joint distribution to perform inference

The process can be simplified slightly by noting that
B 1
~ Pr(HBP)

is a constant and can be regarded a®amalisermaking relevant probabilities
sum tol.

So a short cut is to avoid computing it as above. Instead:
Pr(HD|HBP) = a Pr(HD A HBP) = (0.09 + 0.07)«

Pr(=HDJHBP) = o Pr(=HD A HBP) = (0.02 + 0.03)cx

and we need
Pr(HD|HBP) + Pr(—=HD|HBP) = 1

SO .
T 0.09+0.07+0.02+0.03
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Using the full joint distribution to perform inference Using the full joint distribution to perform inference
Thegeneral inference proceduis as follows: Simple eh?
Well, no...

Pr(Q|e)f—P1Q/\e ZPrQeu
where

e () is the query variable.
e ¢ is the evidence.
e y are the unobserved variables.

e 1/7 normalises the distribution.
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e Forn Boolean variables the table hzisentries.

e Storage and processing time are boi2").

e You need to establiski’* numbers to work with.
In reality we might well haver > 1000, and of course it'®ven worséf variables
are non-Boolean

How can we get around this?
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Exploiting independence

If I toss a coin and roll a dice, the full joint distribution @utcomes requires
2 x 6 = 12 numbers to be specified.

1 2 3 4 5 6
head |0.014|0.028 | 0.042|0.057 | 0.071| 0.086
tail |0.033/0.067| 0.1 |0.133/0.167| 0.2

Here Pr(Coi n = head) = 0.3 and the dice has probabilitd/21 for the ith
outcome.

BUT: if we assume the outcomes are independent then
Pr(Coi n,Di ce) = Pr(Coi n)Pr(Di ce)
WherePr(Coi n) has two numbers ariet:(Di ce) has six.

So instead of2 numbers we only neegl
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Exploiting independence

Similarly, say instead of just considerimp, HBP and CP we also consider the
outcome of theDxford versus Cambridge tiddlywinks competitio&

Pr(TC = Oxford)=0.2
Pr(TC = Canbridge)=0.7

Pr(TC = Draw) =0.1
Now
Pr(HD, HBP, CP, TC) = Pr(TCJHD, HBP, HD) Pr(HD, HBP, HD)

Assuming that the patient is not astraordinarily keen fan of tiddlywinksheir
cardiac health has nothing to do with the outcome, so

Pr(TCJHD, HBP, HD) = Pr(TC)

and?2 x 2 x 2 x 3 = 24 numbers has been reducedite 8 = 11.
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Exploiting independence

In general you need to identify such independence thrémgkwledge of the prob-
lem

BUT:

e |t generally does not work as clearly as this.
e The independent subsets themselves can be big.
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Bayes theorem

From first principles
Pr(z,y) = Pr(z|y) Pr(y)

Pr(z, ) = Pr(yle) Pr(a)

SO
Pr(y|x) Pr(x)

Pr(y)
The most important equation in modern Al?

Pr(aly) =

Whenevidence: is involved this can be written

Pr(QI,¢) = T B
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Bayes theorem
Taking another simple medical diagnosis examplees a patient with a fever
have malaria?A doctor might know that
Pr(f ever |mal ari a) = 0.99

Pr(mal ari a) = 10000

1
Pr(f ever) = %

Consequently we can try to obtaltr(nal ar i a|f ever ) by direct application
of Bayes theorem
. 0.99 x 0.0001
Pr(mal ari a|f ever) = % =0.00198
Uo

or using the alternative technique
Pr(mal ari a|f ever ) = aPr(f ever |mal ari a) Pr(mal ari a)

if the relevant further quantityr(f ever |-mal ari a) is known.
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Bayes theorem

e Sometimes the first possibility is easier, sometimes not.
e Causal knowledgsuch as
Pr(f ever |mal ari a)
might well be available whediagnostic knowledgsuch as
Pr(mal ari a|f ever)
is not.

e Say the incidence of malaria, modelled By(Mal ar i a), suddenly changes.
Bayes theorem tells us what to do.

e The quantity
Pr(f ever|nal ari a)

would not be affected by such a change.
Causal knowledgean be more robust.
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Conditional independence

What happens if we havaultiple pieces of evidenge
We have seen that to compute
Pr(HD|CP, HBP)
directly might well run into problems.
We could try using Bayes theorem to obtain
Pr(HD|CP, HBP) = « Pr(CP, HBP|HD) Pr(HD)

However whileHD is probably manageable, a quantity suctPasCP, HBP|HD)
might well still be problematic especially in more realistases.
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Conditional independence

However although in this case we might not be able to exphaiependence di-
rectly wecansay that

Pr(CP, HBP|HD) = Pr(CP|HD) Pr(HBP|HD)
which simplifies matters.
Conditional independence
e Pr(A, B|C) = Pr(A|C) Pr(B|C).
o If we know thatC is the case thed and B are independent.

Although CP and HBP are not independent, they do not directly influence one
anothelin a patient known to have heart disease

This is much nicer!
Pr(HD|CP, HBP) = « Pr(CP|HD) Pr(HBP|HD) Pr(HD)
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Naive Bayes

Conditional independence is often assumed even when itrdgdw®ld.
Naive Bayes
Pr(A, By, By, ..., By) = Pr(A) [ Pr(Bi|4)
i=1

Also known addiot’'s Bayes
Despite this, it is often surprisingly effective.

101

Uncertainty Il - Bayesian Networks

Having seen that in principle, if not in practice, the fulljbdistribution alone
can be used to perform any inference of interest, we now ex@mipractical
technique.

e We introduce théBayesian Network (BNgs a compact representation of the
full joint distribution.

e \We examine the way in which a BN can benstructed

o \We examine theemanticof BNs.

e We look briefly at howinferencecan be performed.

Reading:Russell and Norvig, chapter 14.
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Bayesian networks

Also calledprobabilistic/belief/causal networl® knowledge maps

@® ()
@) (=

e Each node is eandom variable (RV)
e Each nodeV; has a distribution
Pr(V;|par ent s(NN;))

e A Bayesian network is directed acyclic graph

e Roughly speaking, an arrow frof¥ to M/ meansV directly affects) .
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Bayesian networks

After aregrettable incidentnvolving aninflatable gorilla a famous College has
decided to install an alarm for the detection of roof clinger

e The alarm isverygood at detecting climbers.

o Unfortunately, it is also sometimes triggered when one efektremely fat
geesdhat lives in the College lands on the roof.

e One porter’s lodge is near the alarm, and inhabited by a ch#pexcellent
hearing and apathological hatredof roof climbers: healwaysreports an
alarm. His hearing is so good that he sometimes thinks hesteaalarm,
even when there isn't one

e Another porter’s lodge is a good distance away and inhalliyeanold chap
with dodgy hearingwho likes to listen to his collection dDEATH METAL
with the sound turned up.
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Bayesian networks

Pr(d i mber)

Pr(Goose)

Yes:0.05 Yes: 0.2

No: 0.95 No: 0.8
Pr(A|C,G
G Pr(A|IC,G
Y 0.98
N 0.08
N 0.96
Y 0.2

Lodgel Lodge2
Pr(L1|A) Pr(L2|A)

0.99
0.08

0.6
0.001

—a

-a
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Bayesian networks

Note that:

¢ In the present example all RVs atiscrete(in fact Boolean) and so in all cases
Pr(N;|parentslV;)) can be represented asable of numbers

e Cl i mber andGoose have onlyprior probabilities.

e All RVs here are Boolean, so a node wijtlparents require®’ numbers.

A BN with n nodes represents the full joint probability distribution fhose nodes
as

Pr(Ny =ny, Ny = ny, ..., Ny = n,) = [ [ Pr(N: = ni|parentsNi))  (2)
i=1
For example

Pr(-C,~G A, L1,L2) = Pr(L1|A) Pr(L2|A) Pr(A|-C, ~G) Pr(~C) Pr(~G)
=0.99 % 0.6 x 0.08 x 0.95 x 0.8
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Semantics

IngeneraPr(A, B) = Pr(A|B) Pr(B) so abbreviatind’r(N; = ny, No = no, ..., N,
ny,) to Pr(ny, ny, ..., n,) we have

Pr(ni,...,n,) = Pr(ng|n,-1,...,n1) Pr(n,_1,...,n1)
Repeating this gives
Pr(ni,...,n,) = Pr(n,|n,_1,...,n1) Pr(ng—1|n,—2, ..., n1) - - Pr(nyg)
= H PI"(’I?/Z'|’I7/Z',17 ce ,m) (3)
i=1

Now compare equations (2) and (3). We see that BNs make thenpisn
Pr(N;|Ni_1, ..., Ni) = Pr(N;|parentsh;))
for each node, assuming that parénts C {N;_1,..., N1}

EachN; is conditionally independent of its predecessors givepatents
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Semantics

e When constructing a BN we want to make sure the precedingeptyppolds.
e This means we need to take care ovetering

¢ In generakauses should directly precede effects

e® o
Y

Here, parentsV;) contains all preceding nodes havingdigect influenceon ;.
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Semantics

Deviation from this rule can have major effects on the coxipteof the network.

That's bad!We want to keep the network simple:

o |f each node has at mogtparents and there areBoolean nodes, we need to
specify at mosti2? numbers...

o ...whereas the full joint distribution requires us to speeifjnumbers.

So: there is a trade-off attached to the inclusiontefiuousalthoughstrictly-
speaking correcedges.
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Semantics

As a rule, we should include thmost basic causefirst, thenthe things they
influence directly etc
What happens if you get this wrong?

Example:add nodes in the ordér2,L1,GCA.

Lodge2
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Semantics
In this example:

e Increased connectivity.

e Many of the probabilities here will be quite unnatural anddtarspecify.

Once againcausal knowledges preferred taliagnostic knowledge

111

Semantics

As an alternative we can say directly what conditional iretefence assumptions
a graph should be interpreted as expressing. There are twmon ways of doing
this.

Any nodeA is conditionally independent of th¥,—its non-descendantsgiven
the P—its parents.
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Semantics

Any node A is conditionally independent of all other nodes given karkov
blanketM;—that is, itsparents its childrenand itschildren’s parents
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More complex nodes

How do we represent
Pr(V;|parents;))

when nodes can denogeneral discrete and/or continuous RVs

e BNs containing both kinds of RV are callégbrid BNs

o Naive discretisationof continuous RVs tends to result in both a reduction in
accuracy and large tables.

e O(2P) might still be large enough to be unwieldy.

e We can instead attempt to uséandard and well-understoodistributions,
such as th&aussian

e This will typically require only a small number of paramestéo be specified.
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More complex nodes

Example: functionatelationships are easy to deal with.
N; = f(parentsh;))

1 if n; = f(parent$N;))

Pr(V; = n;|parentshV;)) = { 0 otherwise
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More complex nodes

Example:a continuous RV with one continuous and one discrete parent.
Pr(Speed of car|Throttle position,Tuned engine)
whereSC andTP are continuous an@E is Boolean.
e For a specific setting dET = t r ue it might be the case th&C increases
with TP, but that some uncertainty is involved
Pr(SCTP, et ) = N(get TP + cet, 05 )

e For an un-tuned engine we might have a similar relationshib s different
behaviour
Pr(SC/TP, —et ) = N(g-et TP+ c-et, 02t )

There is a set of parametefg, ¢, o'} for each possible value of the discrete RV.
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More complex nodes

Example:a discrete RV with a continuous parent
Pr(Go roofclinbing|Size of fine)

We could for example use thmobit distribution

Pr(Go roofclinmbing=true|size)=2> <t5|ze>
S

0= [ Ny

andN (x) is the Gaussian distribution witero mean and variance

where
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More complex nodes

The probit distribution

1 T T

10

E
=]
041 B
0.2 i
0 I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6
x
(GRC = true [size) with ¢ = 100 and different values of s
1 T — T T
0.8 b

i B = L

I
90 92 94 96 98 100
size
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More complex nodes

Alternatively, for this example we could use tlogjit distribution
. . . 1
Pr(Go roofclinbing=true|size)=
which has a similar shape.

e Tails are longer for the logit distribution.
e The logit distribution tends to be easier to use...

e ...but the probit distribution is often more accurate.
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1 4 e(—2(t—size)/s)

Basic inference

We saw earlier that the full joint distribution can be usegeoformall inference

tasks
Pr(Qle) = —Pr (QNe)

where

e () is the query variable

e cis the evidence

e y are the unobserved variables
e 1/Z normalises the distribution.
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Basic inference

As the BN fully describes the full joint distribution

Pr(Q,u, ) = [ [ Pr(V;|parentsn;))
=1
It can be used to perform inference in thigviousway

Pr(Qle) = % Z H Pr(N;|parent$N;))

u i=1

but as we’ll see this i81 practice problematic

e More sophisticated algorithms aim to achieve thigre efficiently
e For complex BNs we resort @mpproximation techniques
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Other approaches to uncertainty: Default reasoning

One criticism made of probability is that it iimericalwhereas human argument
seems fundamentally different in nature:

¢ On the one hand this seems quite defensible. | certainly dravare of doing
logical thoughtthrough directmanipulation of probabilitiesbut. . .

e ...on the other hand, neither am | awaresofving differential equations
order towalk!

Default reasoning:

e Does not maintainlegrees of belief

¢ Allows something to be believadhtil a reason is found not to
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Other approaches to uncertainty: rule-based systems

Rule-based systems have some desirable properties:
e Locality: if we establish the evidencE and we have a rul& — Y thenY
can be concluded regardless of any other rules.

e Detachment once anyY has been established it can then be assumed. (It's
justification is irrelevant.)

e Truth-functionality truth of a complex formula is a function of the truth of its
components.

These are not in general shared by probabilistic systemat Wappens if:

e We try to attach measures of belief to rules and propositions

e We try to make a truth-functional system by, for example, mgtbelief in
X A'Y afunction of beliefs inX andY?
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Other approaches to uncertainty: rule-based systems

Problems that can arise:

1. Say | have the causal rule
Heart diseasé> Chest pain
and the diagnostic rule
Chest painﬂ Heart disease

Without taking very great care to keep track of the reasopinngess, these
can form aoop.

2. If in addition | have
Chest painﬁ Recent physical exertion

then it is quite possible to form the conclusion that with sategree of cer-
tainty heart disease is explained by exertiovhich may well be incorrect.
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Other approaches to uncertainty: rule-based systems

In addition, we might argue that because heart disease ispdanation for chest
pain the belief in physical exertion shoudécrease

In general when such systems have been successful it haghibeegh very care-
ful control in setting up the rules.
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Other approaches to uncertainty: Dempster-Shafer theory

Dempster-Shafer theory attempts to distinguish betwesrertaintyand igno-
rance

Whereas the probabilistic approach looks atptabability of X, we instead look
at theprobability that theavailable evidence supporfs.

This is denoted by thkelief functionBel(.X).

Example given a coin but no information as to whether it is fair | hanereason
to think one outcome should be preferred to another

Bel(outcome= head = Bel(outcome= tail) = 0

These beliefs can be updated when new evidence is availkilela.expert tells
us there is: percent certainty that it's a fair coin then

. 1
Bel(outcome= head = Bel(outcome= tail) = 1%0 X 5
We may still have gapin that
Bel(outcome= head + Bel(outcome= tail) # 1.

Dempster-Shafer theory provides a coherent system foingdealth belief func-
tions.
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Other approaches to uncertainty: Dempster-Shafer theory

Problems
e The Bayesian approach deals more effectively with the dfizatton of how
belief changesvhennew evidence is availahle

e The Bayesian approach has a better connection to the carfagpity, whereas
the latter is not well-understood for use in conjunctionhviitempster-Shafer
theory.
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Uncertainty Ill: exact inference in Bayesian networks

We now examine:
e The basic equation for inference in Bayesian networks dtterlbeing hard to
achieve if approached in the obvious way.

e The way in which matters can be improved a little by a small ification to
the way in which the calculation is done.

e The way in which much better improvements might be possiblegua still
more informed approach, although not in all cases.

Reading:Russell and Norvig, chapter 14, section 14.4.
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Performing exact inference

We know that in principle any quer§ can be answered by the calculation

= %Z Pr@Q, e, u)

where(@ denotes the query, denotes the evidence,denotes unobserved vari-
ables and /Z normalises the distribution.

The naive implementation of this approach yields EBmimerate-Joint-As&lgo-

rithm, which unfortunately require@(2") time and space for Boolean random
variables (RVs).
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Performing exact inference

In what follows we will make use of some abbreviations.

e C' denote i nber
e G denotesoose
e A denotedAl arm
e 1.1 denoted odgel
e L2 denoted.odge2

Instead of writing out RC = T), P{C = L) etcwe will write Pr(c), Pr—c) and
so on.
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Performing exact inference

Also Pr(@Q, e, u) has a particular form expressing conditional independgnce

Pr(d i mber ) Pr(Goose)
Yes: 0.05 Yes: 0.2
No: 0.95 No: 0.8

Pr(AIC,G)
G Pr(AIC,G)
Y 0.98
N 0.08
N 0.96
Y 0.2
Lodgel
Pr(L1|A) Pr(L2|A)
a 0.99 a 0.6
-a 0.08 -a 0.001

PI(C, G, A, L1, L2) = Pi(C)PI(G)PI(A|C, G)PrL1|A)Pr(L2| A)
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Performing exact inference

Consider the computation of the query®}i1, i2)
We have

Pr(C|i1,12) ZZ Pr(C)PK(G)PH(A|C, G)Pr(i1| A)Pr(i2| A)

Here there are 5 multlpl|cat|ons for each set of values thpéars for summation,
and there are 4 such values.

In general this gives time complexity(n2") for n Boolean RVs.

Looking more closely we see that
Pr(C|I1,12) = Z Z Pr(C

:ZPr ZPrll|A Pr(i2|A) Y PHG)PIAIC,G) (4
A G

G)PI(A|C, G)Pr(11]A)Pr(i2| A)

_ %p«c) S PIG) ST PHAIC, G)PHIL| A)PII2] A)
G A
So for example...
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Performing exact inference

1 Pr(alc, g)Pr(l1]a)Pr(i2|a)
Pr(c|i1,12) :ZPr(c) (Pr<g) { +Pr(-alc, g)Pr(l1|—\a)Pr(l2|ﬂa) }

Pr(a|c, —g)Pr(l1]a)Pr(i2]a)
+Pr(=g) { Pr(oales ~g)PHIL|~a)Pr12]~a) })

with a similar calculation for Rr¢|i1, [2).

Basically straightforwardBUT optimisations can be made.
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Performing exact inference

Pr(alc, g) Pr(—ale, g) Pr(ale, ¢ Pr(=ale, ~g)

***************************

L Pr(lifa) Pr(l]~a) | | Pr(iLla) Pr(i1|-a) !

L Pr(i2la) Pri2~a) | | Pr(i2la) PI(i2|-a) |
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Optimisation 1: Enumeration-Ask

The enumeration-asllgorithm improves matters t0(2") time andO(n) space
by performing the computatiotepth-first

However matters can be improved further by avoidingdbplication of compu-
tationsthat clearly appears in the example tree.
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Optimisation 2: variable elimination

Looking again at the fundamental equation (4)

—Pr ZPr ZPrA|C G)Pr(I1|A)Pr(12|A)
—_— A
A L1 L2
whereC, G, A, L1, L2 denote the relevarfiaictors

The basic idea is to evaluate (4) from right to left (or in teraf the tree, bottom
up) storing resultsas we progress amd-using thenwhen necessary.

Pr(i1|A) depends on the value ¢f. We store it as a tablE;,(A). Similarly for

PI(2] A).
Fr(4) = <8 32) Fia(A4) = (00081 )

as Pfll]a) = 0.99, Pr(i1|—a) = 0.08 and so on.
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Optimisation 2: variable elimination

Similarly for P(A|C, G), which is dependent o4, C andG

FA(A,C,G)
0.98
0.96

0.2
0.08
0.02
0.04

0.8
0.92

FA(A7 07 G) =

FEEE A A
FEAA4FE A4
FAEAEF A4 HQ

Can we write

Pr(A|C, G)Pr(I1|A)Pr(I2| A)
as

Fi(A C,G)F1(A)F 5(A)

in a reasonable way?
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©®)
(6)

Optimisation 2: variable elimination

The answer is “yes” provideahultiplication of factorss defined correctly. Look-
ing at (4)

ZP1C) XG: Pr(G) 24: Pr(A|C, G)Pr(I1|A)Pr(i2| A)
note that the values of the product (5) in the summation dgperthe values of

C andG external to it, and the values af themselves. So (6) should be a table
collecting values for (5) where correspondences betweend®¥ maintained.

This leads to a definition for multiplication of factors bgsten by example.
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Optimisation 2: variable elimination

F(A, B)F(B,C) = F(A, B,C)

where
A B\F(A,B)|B C|F(B,C)|A B C|F(A,B,C)
T T] 03 |T T| 0.1 T T T] 03x0.1
T 1L} 09 |T L| 08 |T T L| 03x0.8
LT 04 |L T] 08 |T L T| 09x%x0.8
1 1] 0.1 L 1] 03 |T L 1| 09x%x0.3
L T T] 04x0.1
L T 1] 04x0.8
1L 1L T} 01x0.8
L L 1] 01x0.3
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Optimisation 2: variable elimination

This process gives us

0.98 x 0.99 x 0.6
0.96 x 0.99 x 0.6
0.2 x0.99 x 0.6
0.08 x 0.99 x 0.6
0.02 x 0.08 x 0.001
0.04 x 0.08 x 0.001
0.8 x 0.08 x 0.001
0.92 x 0.08 x 0.001

Fu(A, C,G)Fi(A)F 2(A) =

FEEE A A
FEAA4EFEF A4
FAEAEF A4 HQ
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Optimisation 2: variable elimination

How about
Fi510(CG) = Z Fu(A,C,G)F1(A)F12(A)
A

To denote the fact thatt has been summed out we place a bar over it in the
notation.

Z F4(A,C,G)Fi(A)F o(A) =F s(a, C, G)F 1 (a)F 2(a)
Il

+Fa(-a,C,G)Fri(-a)Fa(—a)
where

0.98
0.96| Fri(a) = 0.99 Fpy(a) = 0.6
0.2

C
T
FA<CL, C, G) =T
1
1 0.08

FHEHQ

and similarly forF 4(—a, C, G), F11(—a) andF 15(—a).
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Optimisation 2: variable elimination

0.98 x 0.99 x 0.6
0.96 x 0.99 x 0.6
0.2 x 0.99 x 0.6
0.08 x 0.99 x 0.6

FA(CL, C, G)FLl(a)FLz(a) =

[Ep—— P
F—EHQ

0.02 x 0.08 x 0.001
0.04 x 0.08 x 0.001
0.8 x 0.08 x 0.001
0.92 x 0.08 x 0.001

FA(—!(I, C, G)FL](—'CL>FLQ(—|CL> =

EE—— T
F - HQ

(0.98 x 0.99 x 0.6
(0.96 x 0.99 x 0.6

(0.2 x 0.99 x 0.6
(0.08  0.99 x 0.6

0.02 x 0.08 x 0.001)
0.04 x 0.08 x 0.001)
0.8 x 0.08 x 0.001)

0.92 x 0.08 x 0.001)

FH.LLLQ(C, G) =

RIS
FHE

+ 4+ +
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Optimisation 2: variable elimination

Now, say for example we haver, g. Then doing the calculation explicitly would
give

> Pr(A|=c, g)PHi1|A))Pri2| A)
A
= Pr(a|—e, g)Pr(i1|a)Pr(i2]a) + Pr(—a|—c, g)Pr(1|—a)Pr(12|-a)
= (0.2 x 0.99 x 0.6) + (0.8 x 0.08 x 0.001)
which matches!
Continuing in this manner form
FG,Z,LLM(C» G) = FG<G>FZ‘L1,L2<CV G)
sum outGy to obtainFz 1 1, 15(C) = > ¢ Fo(G)F3 1 1o(C, G), form

FCE,ELl,Lz = FC'(C)FG,H,LLLQ(C)
and normalise.
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Optimisation 2: variable elimination

What's the computational complexity now?

e For Bayesian networks with suitable structure we can perfimference in
linear time and space.

e However in the worst case it #P-hard, which isworse thanV P-hard.
Consequently, we may need to resorafgproximate inference

Uncertainty 1V: Simple Decision-Making

We now examine:

e The concept of atility function

e The way in which such functions can be related to reasonatitens about
preferences

¢ A generalization of the Bayesian network, known akeaision network

e How to measure thealue of informationand how to use such measurements
to design agents that caisk questions
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Reading:Russell and Norvig, chapter 16.
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Simple decision-making

We now look at choosing an action by maximisigpected utility
A utility functionU (s) measures thdesirability of a state

If we can express a probability distribution for the statsuiting from alternative
actions, then we can act in order to maximise expectedyuitilit

For an actioru, letResul t (a) = {s1, ..., s,} be a set of states that might be the
result of performing action. Then the expected utility of is

EUalE)= Y Pi(sla, E)U(s)

seResul t (a)

Note that this applies tindividual actions Sequences of actions will not be
covered in this course.
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Simple decision-making: all of Al?

Much as this looks like a complete and highly attractive meétfuy an agent to
decide how to act, it hides a great deal of complexity:

1. It may be hard to computé(s). You generallydon’t know how good a state
is until you know where it might lead on:tplanningetc...
2. Knowing what state you're currently in involvesost of Al

3. Dealing with Pts|a, F) involvesBayesian networks
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Utility in more detail

Overall, we now want to expregseferencebetween different things.
Let’s use the following notation:

X >Y : X is preferred ta”
X =Y : we are indifferent regarding andY”
X > Y : X is preferred, or we're indifferent

X, Y and so on aréotteries A lottery has the form
X = [pla Ol|p27 OQl e |pn,7 On}

whereO; are the outcomes of the lottery apdtheir respective probabilities.
Outcomes can bether lotteriesor actual states.
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Axioms for utility theory

Given we are dealing with preferences it seems that theisoane clear properties
that such things should exhibit:

Transitivity: if X > Y andY > Z thenX > 7.

Orderability: eitherX >Y orY > XorX =Y.

Continuity, if X > Y > Z then there is a probability such that
. X[(1—p),Z] =Y

Substitutability if X =Y then
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Axioms for utility theory

Monotonicity if X > Y then for probabilitie®, andp,, p; > p- if and only if
[plaX‘(l _pl),Y] Z [p27X‘(1 _p2)*Y}

Decomposability

[p1, X|(1 = p1), [p2, V(1 = p2), Z]] = [p1, X|(1 = p1)p2, Y|(1 = p1)(1 — p2), Z]

If an agent’s preferences conform to the utility theory axée—and note that
we areonly considering preferences, not numbers—then it is possibiiefine a
utility function U (s) for states such that:

1.U(s1) > U(sg) < 51 > 59
2.U(s1) = Ulsg) «— s1 = 89
3. U([ph S1|p2, 82| T \pm SnD = Z?:1piU(3i)-

We therefore have a justification for the suggested approach
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Designing utility functions

There is complete freedom in how a utility function is definkdt clearly it will
pay to define them carefully.

Example the utility of money (for most people) exhibitswonotonic preference
That is, wepreferto havemore of it

But we need to talk about preferences betwetteries

Say you've wonl00, 000 pounds in a quiz and you're offered a coin flip:

e For heads: you win a total daf 000, 000 pounds.
e For tails: you walk away with nothing!

Would you take the offer?
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Designing utility functions

Theexpected monetary valEMV) of this lottery is

(0.5 x 1,000, 000) + (0.5 x 0) = 500,000
whereas the EMV of the initial amount 180, 000.
BUT: most of us would probably refuse to take the coin flip.

The story is not quite as simple as this though: our attitudéably depends on
how much money we have to start withl have M/ pounds to start with then | am
in fact choosing between expected utility of

U(M + 100, 000)
and expected utility of
(0.5 x U(M)) + (0.5 x U(M + 1,000, 000))
If M is 50,000,000 my attitude is much different to if it i$0, 000.
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Designing utility functions

In fact, research shows that the utility 8/ pounds is for most people almost
exactly proportional tdog M for M > 0...

The utility U(M) of M pounds
T T T

U(M)

...and follows a similar shape fad < 0.
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Decision networks

Decision networks-also known a#nfluence diagrams.

Site of landfill

Road traffic
Legal action
Build cost Road conjestiol

... allow us to workactionsandutilities into the formalism oBayesian networks

A decision network has three types of node. ..
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Decision networks

A decision network has three types of node:

Chance nodesare denoted by ovals. These are random variables (RV}-repr

sented by a distribution conditional on their parents, aBayesian networks.
Parents can be other chance nodes or a decision node.

Decision nodesare denoted by squares. They describe possible outcontles of
decision of interest. Here we deal only wiingledecisions: multiple decisions
require alternative techniques.

Utility nodes are denoted by diamonds. They describe the utility fumatsdevant
to the problem, as a function of the values of the node’s garen
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Decision networks

Sometimes such diagrams are simplified by leaving out the d®gsribing the
new state and converting current state and decision directitility:

Air quality, cost to taxpayer and
road conjestion describe future state
and so never appear as evidence.

Site of landfill

Road traffic
This gives us fewer nodes to deal with BUT

potentially less flexibility in exploring alternative
descriptions of the problem.

Legal action

EU(alB) = 2, cresul t () P(sla, E)U(s)

Build cost

This is anaction-utility table The utility no longer depends on a state but is the

expected utility for a given action.
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Evaluation of decision networks

Once aspecificaction is selected for a decision node it acts like a chande far
which a specific value is being usedesdence

1. Set the current state chance nodes to their evidencesvalue

2. For each potential action

e Fix the decision node.
e Compute the probabilities for the utility node’s parents.
e Compute the expected utility.

3. Return the action that maximis&t(a|E).
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The value of information

We have been assuming that a decision is to be madealidvidence available
beforehand This is unlikely to be the case.

Knowingwhat questions one should asla central, and important part of making
decisionsExample

e Doctors do not diagnose by first obtaining results for allgilgle tests on their
patients.

e They ask questions to decide what tests to do.

e They are informed in formulating which tests to perform byplmbilities of
test outcomes, and by the manner in which knowing an outcoigatrim-

prove treatment.
e Tests can have associated costs.
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The value of perfect information

Information value theoryrovides a formal way in which we can reason about
what further information to gather usirsgnsing actions

Say we have evidendg, so
EU(acti on|E) = max > Prsla, B)U(s)
seResul t (a)
denotes how valuable the best action based anust be.
How valuable would it be to learn aboufuarther piece of eviden@e

If we examined another R¥’ and found that?’ = ¢’ then thebest action might
be alteredas we’'d be computing

EU(acti on’|E, E') = max Z Pr(s|a, E, EU(s)
¢ seResul t (a)

BUT: becausd”’ is a RV, and in advance of testing we don’'t know its value, we
need toaverageover itspossible valuesising ourcurrent knowledge
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The value of perfect information

This leads to the definition of thealue of perfect informatiofvVPI)
VPI 5(E') = {Z Pr(E' = ¢'|E)EU(act i on'|E, E' = e)} —EU(acti on|E)

VPI has the following properties:

e VPl 5(E') >0
e It is not necessarily additive, that is, it is possible that
VPI p(E', E") # VPl g(E') + VPl g(E")

e It is independent of ordering
VPI p(E', E") = VPl g(E') + VPl g p(E")
= VPl 5(E") + VPl g pzn(E")
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Agents that can gather information

In constructing an agent with the ability to ask questions,would hope that it
would:

e Use a good order in which to ask the questions.

e Avoid asking irrelevant questions.

e Trade off thecostof obtaining information against thealueof that informa-
tion.

e Choose a good time &topasking questions.

We now have the means with which to approach such a design.
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Agents that can gather information

Assuming we can associate a cG8E’) with obtaining the knowledge thd’ =
¢ an agent can act as follows:

e Given a decision network and current percept.
e Find the piece of evidencE’ maximisingVPIl x(E") — C(E").

o If VPI z(E') — C(FE') is positive then find the value d¥’, else take the action
indicated by the decision network.

This is known as anyopicagent as it requests a single piece of evidence at once.

Uncertainty V: probabilistic reasoning through time

We now examine:

e How an agent might operate by keeping track of the state @ntgronment
in an uncertain world, and how alterations in world state andertainty in
observing the world can be modelled using probability distions.

e How inferences can be performed regarding the current, gtat state and
future states.
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e The Viterbi algorithmfor computing the most likely sequence.

o A slightly simplified system within this framework calledrédden Markov
model(HMM), and the way in which some inference tasks can be simglifie
in the HMM case.

Reading:Russell and Norvig, chapter 15.
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Probabilistic reasoning through time

A fundamental idea throughout the Al courses has been thegeant should keep
track of thestate of the environment

e The environment’s statehanges over time
e The knowledge ohow the state changesay beuncertain

e The agent'perceptionof the state of the environmentay be uncertain

For all the usual reasons relateduncertainty we need to move beyond logic,
situation calculugtc
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States and evidence

We model the (unobservable) state of the environment amiisl|
e \We use asequence
(S[h Sh 327 . )
of setsof random variablegRVs).

e Eachs, is asetof RVs
Sy ={sM, ..., 5"}

denoting the state of the environment at titnerheret = 0,1,2, .. ..

Think of the state as changing over time.
S()—>S1—>SQ—>"'
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States and evidence

At each timet there is also anbservableset
E = {Et(l)v ) E?,Em)}

of random variables denoting tlegidence that an agent obtains about the stdte
timet.

As usual capitals denote RVs and lower case denotes actlugsvaSo actual
values for the assorted RVs are denoted

St = {81(€1>7 RS 8127")} = 5t
E; = {651)7 ceey 6£M)} =€
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Stationary and Markov processes

As t can in principle increase without bound we now need somel8iimy as-
sumptions.

Assumption 1 We deal withstationary processeprobability distributions do not
change over time.

Assumption 2 We deal withMarkov processes
Pr(SL‘S(];[,l) = Pr(S[|S[,1> (7)
whereSy.;—1 = (So, S1, ..., St—1).

(Strictly speaking this is &irst order Markov Processand we’ll only consider
these.)

Pr(S;|S;—1) is called theransition model
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Stationary and Markov processes

Assumption 3We assume that evidence only depends on the current state
Pr(Ey|So.t, Eri—1) = PI(E|S;) 8)
Then

Pr(E;|S,;) is called thesensor model

Pr(Sy) is theprior probability of the starting state. We need this as there has to be
some way of getting the process started.
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The full joint distribution

Given:

1. The prior P{Sy).
2. The transition model P$;|S;_;).
3. The sensor model Fx;|S;).

along with the assumptions of stationarity and the assumgtof independence

in equations 7 and 8 we have

t
Pr(S, Sty .., Sty By, B, ..., By) = PHSy) [ PH(Si[Si-1)PHES)) |

i=1

This follows from basic probability theory as for example

Pr(SU7 S], SQ, E], EQ) = Pr<E2|SO:27 E])PI’(SQ|SU:1, E])Pr(El |SU:1>Pr(Sl ‘S[))Pr(SU)
= Pr(E»|S9)Pr(Ss|S1)Pr(E1|S1)Pr(S1|Se)Pr(.Sp)
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Example: two biased coins

Here’s a simple example with ontyo statesandtwo observations
| havetwo biased coins

| flip oneandtell you the outcome

| then eitherstaywith the same coin, cswapthem.

This continues, producing a succession of outcomes:

head head
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Example: two biased coins

We'll use the following numbers:
e The prior P(S; = coi n1) = 0.5.
e The transition model

Pr(S; = coi n1]S;_; = coi n1) = Pr(S; = coi n2|S;_; = coi n2) = 0.8
Pr(S; = coi n1|S;_; = coi n2) = Pr(S; = coi n2|S;_; = coi nl) =0.2

e The sensor model

Pr(E; = head|S; =coi nl) =0.1
Pr(E; = head|S; = coi n2) = 0.9
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Example: two biased coins

This is straightforward to simulate.

Here’s an example of what happens:

[c2,C2,C1,C1,Ch,CLCL,Cl,C,C,C,CL,C2,CL,CLLCLLCLL L, G, CL G, C2, €2, C2, €2, C2, C2, C2, C2, C2, C2, C2,C2, C2, C2, C2, C2, C2, C2, C2]

13

[Hd, TI, T, T, Hd, T, Hd, T, T, T, Hd, T, HA, T, T, T, 7L, T, Hd, T, TH, H, Hd, Hd, H, Hd, H, Hd, H, 1, Hd, H, Hd, HAL Hd, Hd, H HAL T, Hd)

As expected, we tend to see runs of a single coin, and miglgotxp be able to
guess which is being used as one favours heads and the dkher ta
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Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. Tokaa good start to
the coming week, he climbs on a Sunday with probabilifs. Being concerned
for his own safety, he is less likely to climb today if he clietbyesterday, so

Priclimb today|clinb yesterday)=04
If he did not climb yesterday then he is very unlikely to clitalay, so
Pricl i nb today|—-clinb yesterday)=0.1

Unfortunately, he is not a very good climber, and is quitellito injure himself
if he goes climbing, so

Pr(i njuryl|clinmb today)=0.38

whereas
Pr(i nj ury|—clinmb today)=0.1
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Example: 2008, paper 9, question 5

This has a similar corresponding diagram:

injury injury

We’'ll look at the rest of this exam question later.
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Performing inference

There are four basic inference tasks that we might want tmper
In each of the following cases, assume that we have obsdmeesl/tdence
By = ey
Task 1:filtering
Deduce what state we might now be in by computing
Pr(Si|er.s).
In the coin tossing questiorilf you've seen all the outcomes so far, infer which
coin was used last”

In the exam question’lf you observed all the injuries so far, infer whether my
friend climbed today’
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Performing inference

Task 2:prediction

Deduce what state we might be in some time in the future by ctimgp
Pr(Siir|e1.) for someT > 0.

In the coin tossing questiorilf you've seen all the outcomes so far, infer which

coin will be tossed” steps in the future”

In the exam questioriif you've observed all the injuries so far, infer whether my
friend will go climbing?" nights from now”
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Performing inference

Task 3:Smoothing

Deduce what state we might have been in at some point in thdopasmputing
Pr(Siler.r) for0 <t < T.

In the coin tossing questiorilf you've seen all the outcomes so far, infer which

coin was tossed at timen the past”.

In the exam questiorfif you've observed all the injuries so far, infer whether my
friend climbed on night in the past”.
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Performing inference

Task 4:Find the most likely explanation
Deduce the most likely sequence of states so far by computing

argmax Pr(sy.¢|e.¢)
S1:t

In the coin tossing questiofitf you've seen all the outcomes so far, infer the most
probable sequence of coins used”

In the exam question’lf you've observed all the injuries so far, infer the most
probable collection of nights on which my friend climbed”
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Filtering

We want to compute P§;|e;.;). This is often called théorward messagand
denoted

fie = Pr(Stlers)
for reasons that are about to become clear.

Remember thaf,; is an RV and sqf;.; is a probability distributioncontaining a
probability for each possible value 6f.

It turns out that this can be done in a simple manner withcarrsive estimatiaon
Obtain the result at time+ 1:

1. using the result from timeand...

2. ...incorporating new evideneg, ;.

freer = gle, fi)
for a suitable functiory that we’'ll now derive.
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Filtering

Step 1.
Project the current state distribution forward
Pr(Sii1lersr1) = Pr(Siiilers, er1)
= cPr(e41]Si41, €1:)PH(Sis1]err)
= cPr(e41]Si+1)Pr(Sier)
Sensor model Needs more work
where as usual is a constant that normalises the distribution. Here,

e The first line does nothing but split.;,; into e;.; andey ;.
e The second line is an application of Bayes’ theorem.

e The third line usesssumption 3egarding sensor models.
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Filtering

Step2:
To obtain P¢S,, e
Pr(Sii1lers) = Z Pr(Sti1, stle1s)

St

= Z Pr(Sii1]st, ert)Pr(siler)

St
= Pr St+1 St Pr St|€1:¢
> P o |st) | (stlex: )A
St Transition model Available from previous step

Here,

e The first line uses marginalisation.
e The second line uses the basic equatiddiPB) = Pr(A| B)Pr(B).
e The third line usesssumption 2egarding transition models.
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Filtering

Pulling it all together

Pr(Siialerii) = cPriei1]Si) Z Pr(S;i1]s:) Pr(si|er) 9

Sensor model st Transition model From previous step

This will be shortened to
fl:H'l = CFORWARqet-Flv fl:t)
Here
e f1.+1s a shorthand for P6;|e1+).

e f1;is often interpreted asrmessagéeing passed forward.
e The process is started using theor.

182

Prediction

Prediction is somewhat simpler as

Pr(Sitri1lers) | = Z Pr(Sii741, Ste7l€1:0)
—_—

Prediction at+7"+1 St+T

= Z Pr(Siiri1lsiir, e1d)Pr(siprlers)

St+T

= Z Pr(Spiri1|Ser)Pr(sierler)

St+17  Transition model Prediction at+7

However we do not get to make accurate predictions arbitrani into the future!
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Smoothing

For smoothing, we want to calculate(Bre;.r) for0 <t < T.

Again, we can do this in two steps.

Step 1:
Pr(Si|er.r) = Pr(Siler.r, es1.7)
= cPr(Siler)Pries1.7] St er:)
= cPr(S|e1.)Priesi1.7]S)
= cfriberr
Here

e f1. is the forward message defined earlier.

e b.1.7 is a shorthand for Re., 1.7|S;) to be regarded asmessage being passed
backward
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Smoothing
Step 2:
= Pres41:7]|S)) = Z Prless1:7, S141/51)

St+1

= Z Pr(ess1:7]5¢41)Pr(s¢41|Sk)

St+1

= Z Prless1, err2.]St11)PH(S111|St)

St+1

= Z Presi1]se41)Prerror|sii1) Pr(si1]St)

St+1  Sensor model byto. Transition model

=| BACKWARD (et 1.1, by2.7)

This process is initialised with
byt = Prlerir|Sr) = (1,...,1)
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(10)

The forward-backward algorithm

So:our original aim of computing P6;|e;.7) can be achieved using:

e A recursive process working from timeto timet (equation 9).

e Arecursive process working from tini#eto timet¢ + 1 (equation 10).
This results in a process that@7T") given the evidence;., and smooths for a
singlepoint at timet.
To smooth agll points1 : 7' we can easily repeat the process obtairi{g@?).

Alternatively a very simple example dfyfnamic programmingllows us to smooth
at all points inO(T) time.

186

The forward-backward algorithm

Recursively compute all values fgr.; and store results

_ O

Recursively compute all valués, . and combine with stored values ffr,.
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Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain

argmax Pr(sy4|e1)
S1:t

Earlier we derived the joint distribution for all relevargniables

t
PI(Sy, Si, ... Sp, By, B, ..., Ey) = Pr(Sy) [ [ Pr(Si|Si-1)PHE]S;)

i=1
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Computing the most likely sequence: the Viterbi algorithm

We therefore have

115133< Pr(s1.s, Sro1lerir1)
1:t

= cmax Pr(es1|St41)Pr(Sii1]8:)Pr(si4]e1)

S1:t

:cPr(et+1|St+1)mqax Pr(Sii1]st) 2111‘(135Pr(su_1,5t\61;t)
st S1it—

This looksa bit fierce despite the fact that:

e The second line is just Bayes’ theorem applied to the joistriiution.
e The last line is just a re-arrangement of the second line.
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Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamuigramming algo-
rithm called théviterbi algorithm

Step 1:Simplify the notation.
e Assume there are statessy, . . ., s, andm possible observations, . .., e, at
any given time.
e Denote P(S; = s,|S;-1 = s;) by p; ;(1).
e Denote Pfe;|S; = s;) by ¢;(t).

It's important to remember in what follows that tbbservations are knowbut
that we'remaximising over all possible state sequences
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Computing the most likely sequence: the Viterbi algorithm

The equation we're interested in is now of the form

P = le-_,j(t)qi(t)

(The prior PtS;) has been dropped out for the sake of clarity, but is easy to put
back in in what follows.)

The equatiorP will be referred to in what follows.

Itis in fact afunctionof any given sequence of states
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Computing the most likely sequence: the Viterbi algorithm

Step 2:Make a grid: columns denote time and rows denote state.

1 2 3 k k41 ¢

51 [ ] [ ] [ ] [ ] [ ] [ ]
2 [ ] [ ] [ ] [ ] [ ] [ ]
53 [ ] [ ] [ ] [ ] [ ] [ ]
sn1 @ [ ] [ ] [ ] [ ] [ ]
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Computing the most likely sequence: the Viterbi algorithm

Step 3:Label the nodes:
e Say at timet the actual observation was. Then label the node fos; in
columnt with the valuey; (¥).

e Any sequence of states through time is now a path throughritie$p for any
transition froms; at timet — 1 to s; at timet label the transition with the value

pij(t).

In the following diagrams we can often just writg; andg; because the time is
clear from the diagram.

So for instance...
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Computing the most likely sequence: the Viterbi algorithm

k k+1 e t
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
Go-1(k +1)
Sn1 @ [} ° [ ] [ ]
D1 (k+1)
s [ ] [ J [ J [ ] [ ]

194

Computing the most likely sequence: the Viterbi algorithm

e The value ofP = Hlepi‘j(t)qi(t) for any path through the grid is just the
product of the corresponding labels that have been added.

e But we don’t want to find the maximum by looking at all the pbésipaths
because this would be time-consuming.

e TheViterbi algorithmcomputes the maximum by moving from one column to
the next updating as it goes.

e Say you're at columrk andfor each noden in that column you know the
highest valudor the product to this point ovemy possible pathCall this:

k
Win(k) = n:lapr,;j(t)q,;(t)
=1
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Computing the most likely sequence: the Viterbi algorithm

5 [} ° °
Wa(k)

8 ° ° °
Wi(k)

s [} ° °
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Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

e The valued¥V;(k) fori =1,...,n attimek.
e The numberg; ;(k +1).
e The numbers;(k + 1).

to compute the valued’;(k + 1) for the next columrk + 1.

This is because

Wik 4+ 1) = max W;(k)p;i(k + 1)gi(k + 1)
j
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Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time

e The node with the largest value ftir;(¢) tells you the largest possible value

of P.

¢ Provided you storethe path taken to get theou canwork backwardgo
find the corresponding sequence of states

This is theViterbi algorithm
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Computing the most likely sequence: the Viterbi algorithm

1 2 3 k k+1 t
51 [ ] [ ] [ ]
£ [ ] [ ] [ ]

W3(t) maximum
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Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we lzesiagle
discretestate variables; taking valuess, so, . . ., s,. For example, witm = 3 we

might have
Pr(Sis1]Si = 51)  Pr(S;1|S; = s2)  Pr(S14|S: = s3)
51 0.3 02 0.2

So 0.1 0.6 0.3

S3 0.6 0.2 0.5
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Hidden Markov models

In this simplified case the conditional probabilitie$.$r,]S;) can be represented
using the matrix

Sij = Pr(Si11 = 5|5 = s4)
or for the example on the previous slide

0.3 0.1 0.6\ «— Pr(S|s1)

S=1020602 ] « Pr(S|ss)

0.2 0.3 0.5/ « Pr(S|s3)
Pr(si|s1) Pr(sa|si) -+ Pr(s,|s1)
Pr(si|sa) Pr(sa|s2) -+ Prs,|s2)

Pr<51|57l> Pr(SQISH) T Pr(5n‘5n>
To save space, | am abbreviating £, = s;|S5; = s;) to Pt(s;]s;).
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Hidden Markov models

The computations we’re making are always conditional onesastual observa-
tionse;.7.

For eacht we can therefore use the sensor model to define a furthennigtri

e E, is square and diagonal (all off-diagonal elementsare
e Theith element of the diagonal is @f|S: = s;).

So in our present example wiflstates, there will be a matrix

Pr(e;|s1) 0 0
Et = 0 Pl’(et|82) 0
0 0 Pr(et|ss)

foreacht =1,...,T.
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Hidden Markov models

In the general case the equation for filtering was

Pr<St+1|€1:t+l) = CPr(etH\StH) Z Pr<St+1|3t)Pr<5t‘el:t)
St
and the messagg; was introduced as a representation dffe; ;).
In the present case we can defifyg to be the vector

Pr<51\€1:t)
Pr(ss|er.
o= | Poslerd
Pr(37r|elzt)

Key point: the filtering equation now reduces to nothing but matrix mplittation.
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What does matrix multiplication do?

What does matrix multiplication dof? computes weighted summations

m

a1 @12 Qi by >l anib;
m

Ab = a2..1 a%Z aQIJH, 5.2 _ 27;21.02,111?,;
m

Qp1 Ap2 *° Apm bm Zizl an.ibq'

So the point at the end of the last slide shouldn’t come as aurigrise!
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Hidden Markov models

Now, note that if we have states

Pr(Sl ‘S]) e Pr(b‘l ‘Sn) Pr(b’] |(31:1)

STf“ Pr(sg\sl) cee Pr(SQ‘Sn) Pr(e32|€1;1)

Pr(sn,‘sl) e Pr(sn‘gn) Pr(sn|cl:i)

Pr(si|s1)Pr(silers) + -+ - + Pr(sy|sn)Pr(s,|ert)
Pr(sa|s1)Pr(si|ers) + - - - 4+ Pr(sa|s,)Pr(sp|e1s)
Pr(s,|s1)Pr(si|ers) + - - - + Pr(s,|s,)Pr(spnlers)

> Prisi|s)Pr(s|ers)
>, Prisa|s)Pr(s|ers)

3=, Pr(s,|s)Pr(s|er)
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Hidden Markov models

And taking things one step further

>, Pr(si|s)Pr(s|e)
PI'(GH-I‘SI) 0 Zs Pr(é;é)Pr(é‘cit)

Ei1S" fis = :
> Pri(s|s)Pr(s|er)

O Pr(€t+1|571,)

Priesr1|s1) > Pr(s1|s)Pr(s|er)
Pries1]s2) > Pt(sa|s)Pr(s|er+)

Priess1|sn) -, Pr(sa|s)Pr(s|er)
Compare this with the equation for filtering

Pr(Sei1leri1) = cPres1]Sis) Z Pr(Se1|se)Pr(si|er.)

St
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Hidden Markov models

Comparing the expression f@,. S’ f,., with the equation for filtering we see
that

frie1 = cEy1ST fiy

and a similar equation can be found for

bri14 = SEr1brioy

Exercise: derive this.

The fact that these can be expressed simply using only rhcidtfipn of vectors
and matrices allows us to make an improvement to the forwardkward algo-
rithm.
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Hidden Markov models

Theforward-backwardalgorithm works by:

e Moving up the sequence frointo 7', computing and storing values f¢r

e Moving down the sequence froto 1 computing values fob andcombining
them with the stored values fgrusing the equation

Pr(Silerr) = cfiubryrr
Now in our simplified HMM case we have

frer = cEaST fra
or multiplying through by(E,, ;S™)~! and re-arranging

fie = %(ST)71<Er+1)71.f1:t+1
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Hidden Markov models

So as long as:

o We know thefinal value forf.
¢ S” has an inverse.

e Every observation has non-zero probability in every state.

Wedon't have to stord" different values forf—we just work through, discarding
intermediate values, to obtain the last value and then wackward.
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Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. Tokea good start to
the coming week, he climbs on a Sunday with probabilifig. Being concerned
for his own safety, he is less likely to climb today if he clietbyesterday, so

Priclinb today|clinb yesterday)=0.4
If he did not climb yesterday then he is very unlikely to clitololay, so
Pr(cl i mb today|—-clinb yesterday)=0.1

Unfortunately, he is not a very good climber, and is quitelljikto injure himself
if he goes climbing, so

Pr(i njuryl|clinmb today)=0.38

whereas
Pr(i nj ury|—-clinb today)=0.1
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Example: 2008, paper 9, question 5

You learn that on Monday and Tuesday evening he obtains amyjnput on
Wednesday evening he does not. Use the filtering algoritroartgoute the prob-
ability that he climbed on Wednesday.

0.98
fl:O = ( 0.02 >

Initially

0.4 0.6
S_<0.1 o.9)

0.8 0
E< 0 o.1>
, (020
E _( 0 0.9)
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Example: 2008, paper 9, question 5

The update equation is
freer = cEe ST fr

o = c 80 41 98\ [ 0.83874
M= T0,000\01 )\ 69 )\ 2 )7 \ 016126
Repeating this twice more usirfg rather thanZ the final time gives
fg— (051208
1271 0.18732

Fram 0.10429
137\ 0.89571

so the answer i6.1.
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Example: 2008, paper 9, question 5

Over the course of the week, you also learn that he does nairoaih injury on
Thursday or Friday. Use the smoothing algorithm to comphigeprobability that
he climbed on Thursday.

The S, £ and E’ matrices are the same. The backward message starts as

bs.5 = <1>

bt:T = SEtbt+1:T

and the update equation is

Then working backwards

b L (46 (20Y (1Y _ (062
=100\ 19 09 1)~ {083
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Example: 2008, paper 9, question 5

We also need one more forward step, which gives
s 0.03249
B 0.96751

o 0.03249 x 0.62 0.02447
CJ14055 = C\ 0.96751 x 0.83 0.97553

giving the answe®.02447.

Finally
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Online smoothing

Say we want to smooth atfaxed number of time stepdVe can also obtain a
simple algorithm for updating the result each time a rew appears.

Smooth here

1 T lag
L]
\ \NeWFTl
1 T lagT — Iag+1 T+1
L]
\

Update to here
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Online smoothing

As usual we need to calculate

cfrr—taghr—lagi1:r

to smooth at timéT" — lag) if we've progressed to tim@&'. So: assume.r_jaq
andby_jagy 1. are known.

What can we now do whesy,; arrives to obtairyi.;_jag:1 andbr_jag2:711?

f is easy to update because as usual

T
fl:T—Iag+1 = CET—IagHS fl:T—Iag

Known
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Online smoothing

b is more tricky.

We know that
br_tagr1.7 = SE7r_lagr1br—jagro:T
and continuing this recursion up to the end of the sequeritegates
1

T
1
br jagr1T = H SE; x | |
i=T—lag+1 )
1
Define ,
IB(L:b = H SEZ
SO o

1

1
briagi1:1 = Br_jagi1.T X
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Online smoothing

Now whener, , arrives we have

T+1 1

br_tagr2r+1 = H SE; x | |
i=T—lag+2 :

1

1

1

= Broagrar % |,

1

_1 1
=E; 1ag11S™ Brojagr1:rSEr1 X
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Online smoothing

This leads to an easy way to upd#te

5a+l:b+1 = Eglsilﬁa:bSElﬁl

Using this gives the required update tor

Supervised learning Il: the Bayesian approach

We now place supervised learning into a probabilistic sgttly examining:

e The application of Bayes’ theorem to thepervised learning problem
e Priors, the likelihood, and the posterior probabilifya hypothesis

e The maximum likelihoodand maximum a posteriorhypotheses, and some
examples.

e Bayesian decision thearyninimising the error rate.
e Application of the approach taeural networks using approximation tech-
niques.
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Reading

There is some relevant material to be foundRimssell and Norvighapters 18 to
20 although the intersection between that material and Wiuditcover is small.

Almost all of what | cover can be found in:

e Machine Learning Tom Mitchell, McGraw Hill 1997, chapter 6.

e Pattern Recognition and Machine Learninghristopher M. Bishop, Springer,
2006.
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Supervised learning: a quick reminder

We want to design alassifier denotedh(x)

Classifier
Attribute vector —————— h(x) [——— Label

X

It should take an attribute vector

and label it.

What we mean byabel depends on whether we're doistassificationor regres-
sion
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Supervised learning: a quick reminder

In classificatiorwe’re assigning to one of a sefwy, ... ,w.} of ¢ classes

For example, ik contains measurements taken from a patient then there bght
three classes:

w1 = patient has disease
w9 = patient doesn’t have disease
w3 = don’t ask me buddy, I'm just a computer!

We’'ll often specialise to the case of two classes, den6teahdCs.

222

Supervised learning: a quick reminder

In regressionwe’re assigning to areal numberi(x) € R.

For example, ik contains measurements taken regarding today’s weathrewde
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also reea situation somewhat
between the two, where
h(x) =Pr(xisinCy)
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Supervised learning: a quick reminder

We don’t want to desigh explicitly.

. Classifier
Attribute vector ——————s h(x) [ Label

X

Learner

Training sequence
S

So we use &earner L to infer it on the basis of a sequencef training examples
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Supervised learning: a quick reminder

Thetraining sequence is a sequence of: labelled examples

(x1,91)

(x2,2)

(Xm-, ym>

That is, examples of attribute vectotswith their correct label attached.

So alearner only gets to see the labels for a—most probaldjl-sreubset of the
possible input.

Regardless, we aim that the hypothesis= L(s) will usually be successful at
predicting the label of an input it hasn’t seen before.

This ability is calledgeneralization
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Supervised learning: a quick reminder

There is generally a sét of hypotheses from which is allowed to seleck
Lis)=heH
‘H is called thehypothesis space

The learner can output a hypothesis explicitly or—as in #heecof a multilayer
perceptron—it can output a vector

w=(w wy - wy)
of weightswhich in turn specifyh,

h(x) = f(w:;x)
wherew = L(s).

226

Supervised learning: a quick reminder

In Al | you saw thebackpropagation algorithnfor training multilayer percep-
trons, in the case akgression

This worked by minimising a function of the weights representheerror cur-
rently being made:

m

1
E(w) = 52 (fwix) — i)
1=1
The summation here is over the training examples. The esiores the summa-

tion grows asf’s prediction forx; diverges from the known labgj.

Backpropagation tries to find w that minimisest'(w) by performinggradient

descent

0E(w)
ow

Wil = Wy — &

wi
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Difficulties with classical neural networks

There are some well-known difficulties associated with aboetwork training of
this kind.

BEWARE!!
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Sources of uncertainty

So we have to be careful. But let’s press on with this apprdach little while
longer...

The model used above suggests two sources of uncertairityvéhanight treat
with probabilities.
e Let'sassumeve've selected af to useand it's the same one nature is using

e We don’'t know how nature choosgsfrom H. We therefore model our uncer-
tainty by introducing therior distribution Pth) onH.

e There is noise on the training examples.
It's worth emphasising at this point that in modelling noisethe training exam-

pleswe’ll only consider noise on the label§he input vectors are not modelled
using a probability distribution.
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The likelihood

We model our uncertainty in the training examples by spéuiflikelihood:
Pr(Y|h, x)
Translation the probability of seeing a given labgl, when the input vector is
and the underlying hypothesisis
Example two-class classification. A common likelihood is
PrY = Cy|h,x) = o(h(x))

where
_ 1
o(2) = 1+ exp(—2)
(Note strictly speakingk should not appear in these probabilities because it’s not
arandom variable. It is included for clarity.)
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The likelihood

The logistic function 0(2) = e Logistic o(z) applied to the output of a linear function

°
>
Pr(x is in (1)
o
>

W

%

10

0
-10 -5 0 5 10 Input -10 -10 Tnput z;
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The likelihood
So: if we're given a training sequencehat is the probability that it was generated
using some,?

For an exampléx, y), y can beC; or Cs. It's helpful here to rename the classes
as justl ando respectively because this leads to a nice simple expredsmm

olh(x) WY =1
PrCYIh,x) = { 1 —o(h(x)) it Y =0

Consequentlyvhen y has a known valuee can write
Priy|h,x) = [o(h(x))] [1 — o (h(x))]! 7"

If we assume that the examples are independent then theljiipbaf seeing the
labels in a training sequensds straightforward.
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The likelihood

Collecting the inputs and outputssrtogether into separate matrices, so

yT:(yl Yo - ym)

and
X:(Xl X9 Xm)

we have thdikelihood of the training sequence

Priy|h, X) = [ [ Priwi|h, x)
i=1

= [T lothe) [t — ohlx))
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The likelihood

Another exampleregression. A common likelihood in the regression casesvor
by assuming that examples are corrupted by Gaussian ndisenar) and some
specified variance?

y = h(x) + ¢, wheree ~ N (0, 0?)
As usual, the density fok/ (y, 02) is

1 (2 —n)?
Z) = —

p(Z) s P ( 557

by addingh(x) to e we just shift its mean, so

WEEAL
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plylh,x) = 5
o
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The likelihood

Consequently if the examples are independent then thehdad of a training
sequence is

plylh, X) = [ [ plyilh,x:)
i=1

m

= ! ex _M
- E V2ro? P ( 202 )

where we've used the fact that

exp(a) exp(b) = exp(a + b)
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Bayes’ theorem appears once more...

Right we've take care of the uncertainty by introducing grér p(h) and the
likelihood of the training sequenggy |h, X).

By this point you hopefully want to apply Bayes’ theorem anitev

_ plylh)p(h)

where

py) = _plhy) =Y plylh)p(h)
heH heH
and to simplify the expression we have now dropped the memifoX as the
inputs are fixedp(h|y) is called theposterior distribution

The denominatoZ = p(y) is called theevidenceand leads on to fascinating
issues of its own. Unfortunately we won't have time to expltrem.
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Bayes' theorem appears once more...

The boxed equation on the last slide has a very simple irg&pon: what's the

probability that this specifi¢ was used to generate the training sequence I've

been given?

Two natural learning algorithms now present themselves:

1. Themaximum likelihood hypothesis

han. = argmascp(y|h)
heH

2. Themaximum a posteriori hypothesis
hwap = argmaxp(hly)
heH
= argmax p(y|h)p(h)
heH

Obviouslyhy corresponds to the case where the ppidr) is uniform.
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Example: maximum likelihood learning

We derived an exact expression for the likelihood in theesgion case above:

1 1 m
p(ylh) = W(’Xp (‘202 Z(yz - h(xzt)>2>
i1

Proposition under the assumptions usehy learning algorithm that works by
minimising the sum of squared errors ®finds iy
This is clearly of interest: the notable example is Iblaekpropagation algorithm

We now prove the proposition...
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Example: maximum likelihood learning

The proposition holds because:
hw = argmax p(y|h)
heH

= argmax log p(y|h)

heH
g | ! LS 0 hi)?
= argmaxlog | ————=exp | —=— i — Xy
%EH s (27702>m/2 : 20° i=1 g L
1 1 m
— aremaxlog | ——— | — — . — h(x;))?
aI%éI;{dX 08 |:<27T(72)m/2:| 202 ;(y[ (X))

1 m )
= argmax —— yi — h(x;
e 20_2 ;( ? ( l))
m

= argmin Z(y, - h(xi))Q

her
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Example: maximum likelihood learning

Note:

o If the distribution of the noise inot Gaussiara different result is obtained.
e The use ofog above to simplify a maximisation problem is a standard trick

e The Gaussian assumption is sometimes, but not always a daockec (Be-
ware the Central Limit Theorem!)
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The next step...
We have so far concentrated throughout our coverage of madbarning on
choosing asingle hypothesis
Are we asking the right question though?
Ultimately, we want to generalise.

That means being presented with a newand asking the questiowhat is the
most probable classification af?

Is it reasonable to expect a single hypothesis to provideptienal answer?

We need to look at what the optimal solution to this kind objam might be...
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Bayesian decision theory

What is theoptimalapproach to this problem?

Put another way: how should we make decisions in such a wayhtbautcome
obtained is, on average, the best possible? Say we have:

o Attribute vectorsx € R,
e A setofclasseq{w, ..., w.}.

e Several possiblactions{ay, ..., a,}.

The actions can be thought of as sayiagsign the vector to class 1and so on.
There is also #0ssA(«;, w;) associated with taking actian when the class is;.

The loss will sometimes be abbreviated\oy;, w;) = A;;.
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Bayesian decision theory

Say we can alsmodelthe world as follows:

¢ Classes have probabilities(R) of occurring.

e The probability of seeing when the class is has density(x|w).
Think of nature choosing classes at random (although natatawg them) and
showing us a vector selected at random ugipdw).
As usual Bayes rule tells us that

Prlw]x) = p<x|;’<£r(“)

and now the denominator is
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Bayesian decision theory

Say nature shows usand we take action;.
If we alwaystake actiomy; when we se& then theaverageloss on seeing is

R(cuX) = Epupo g X = D M, w;))Priw;[x).

j=1
The quantityR(«q;|x) is called theconditional risk

Note that this particulax is fixed
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Bayesian decision theory

Now say we have decision rulen : R? — {ay, ..., a,} telling us what action to
take on seeingnyx € R’

The average loss, oisk, is
R = Epxw)pixw) [Ma(x), w)]

)
sop(x) [Bumpriuf) M@ (%), w)[x]]
xep(x) [ (X)[%))] (11)

— [ Rla(x)x)p(x)dx

=

=

where we have used the

n

tandard result from probabilityryhibat
E[E[X|Y] =E[X].

(See the supplementary notes for a proof.)
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Bayesian decision theory

Clearly the risk is minimised for the decision rule defineddews:
« outputs the actiom; that minimises(a;|x), for all x € R<.

The provides us with the minimum possible risk Bayes riski*.

The rule specified is called tH@ayes decision rule
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Example: minimum error rate classification

In supervised learning our aim is often to work in such a wat the minimise
the probability of error

What loss should we consider in these circumstances? Fraim peobability
theory

Pr(A) = E[I(A)]
where

0 otherwise
(See the supplementary notes for a proof.)

1(4) = { 1 if A happens
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Example: minimum error rate classification

So if we are addressing a supervised learning problemavthsseqws, . .., w.}
and we interpret action; as meaning ‘the input is in class’, then a loss

)\Zj:{llfi?éj

0 otherwise
means that the risk is
R =E [\ = Prla(x) isin erron

and the Bayes decision rule minimises the probability afrerr
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Example: minimum error rate classification

Now, what is the Bayes decision rule?
R(ai|x) = Z)\ a;, wj)Pr(w;|x)

Z Pr{wj[x)
i#j
= 1— Pr{w;|x)

soa(x) should bethe class that maximisé®(w;|x).

THE IMPORTANT SUMMARGiven a newx to classify, choosing the class that

maximises PLv;|x) is the best strategy if your aim is to obtain the minimum error
rate!
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Bayesian learning I

Bayes decision theory tells us that in this context we shoaftsider the quantity
Pr(w;|s, x) where the involvement of the training sequence has been exqdieit.

Pr(w;]s, x) ZPr wi, h|s, x)
heH
= ZPr(wi\h,s,x)Pr(Ms,x)
heH
= > Prlw;|h,x)Pr(h]s).
heH

Here we have re-introducefd using marginalisation. In moving from line 2 to
line 3 we are assuming some independence properties.
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Bayesian learning I

So our classification should be

w = argmax ZPI’w|h x)Pr(h|s)
wE{wn et ey
If H is infinite the sum becomes an integral. So for example foaat@etwork
w= argmax Priw|w, x)Pr(w|s) dw
welonac} JRIV

wherelV is the number of weights iw.
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Bayesian learning

Why might this make any difference? (Aside from the fact thatnow know it's
optimal!)

Example 1 Say|H| = 3 andh(x) = Pr(x is in classC) for a2 class problem.

Pr(hy]s) = 0.4
Pr(h2|S) = Pr(h;;‘s) =0.3

Now, say we have ar for which

S0 hmap Says thak is in classC;.
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Bayesian learning I A more in-depth example

However, Let’s take this a step further and work through somethingla inore complex in
Priclass 1s,x) = 1 x 0.4+ 0 x 0.3+ 0 x 0.3 detail. For a two-class classification problem witfx) denoting PtC1 |k, z) and
' — 04 reR:
Priclass 2,x) = 0 x 0.4+ 1x 0.3+ 1 x 0.3 HypothesesWe have three hypotheses
=0.6 hy(x) = exp(—(z — 1)?)
so clas<’; is the more probable! ho() = exp(—(2x — 2)?)
In this casehe Bayes optimal approach in fact leads to a different amswe hs(w) = exp(—(1/10)(z — 3)%)
Prior: The prior is Pth,) = 0.1, Pr{hy) = 0.05 and Pths) = 0.85.
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A more in-depth example A more in-depth example
We see the examplé8.5, 1), (0.9, Cy), (3.1, Cy) and(3.4, Cy). Now let's classify the point’ = 2.5.
Likelihood: For the individual hypotheses the likelihoods are given by We need
Pr(s|h) = h(x1)h(z9)[1 — h(zs)]h(z4) Pr(Cifs, ') = PHC1|h1)Pr(hals) + PH(Cy|hy)Prlhals) + PHCy|hs)Pr(hs|s)

= 0.6250705317

Which in this case tells us _ _ _ _ _
So: it's most likely to be in clas§’;, but not with great certainty.

Pr(s|hy) = 0.0024001365

Pr(s|hy) = 0.0031069836

Pr(s|h3) = 0.0003387476
Posterior Multiplying by the priors and normalising gives

Pr(hi]s) = 0.3512575000

Pr(hs|s) = 0.2273519164

Pr(hs|s) = 0.4213905836
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The Bayesian approach to neural networks

Let’s now see how this can be appliedteural networksWe have:

e A neural network computing a functiof{w; x).
e Atraining sequence = ((x1,¥1), - - -, (Xim, Ym)), SPlit into
y:(yl Yo - ym>
and
X=(x Xy -+ X )
Theprior distributionp(w) is now on the weight vectors and Bayes’ theorem tells

us that
p(y|w, X)p(w|X)
p(yX)

p(wls) =p(w|X,y) =

Nothing new so far...
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The Bayesian approach to neural networks

As usual, we don't consider uncertaintyznand soX will be omitted. Conse-
quently
p(y|w)p(w)

pwly) = o)

where

ply) = /R | plylw)p(w)dw

p(y|w) is a model of the noise corrupting the labels and as prewasshelike-
lihood function
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The Bayesian approach to neural networks

p(w) is typically abroad distributionto reflect the fact that in the absence of any
data we have little idea of what might be.

When we see some data the above equation tells us how to glgtajg). This
will typically be more localised

To put this into practice we need expressionsgiar) andp(y |w).
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Reminder: the general Gaussian density

Reminder we're going to be making a lot of use of the gendbalussian density
N(u,X) in d dimensions

p(s) = (2m) S oxp |~ (2~ )2z )

wherep is themean vectoandX is thecovariance matrix
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The Gaussian prior

A common choice fop(w) is theGaussian priomwith zero mean and
DR |
o)

= (2 -w/2_-w _
p(w) = (2m)" o™ exp | =

WTW]
Note thato controls the distribution of other parameters.

e Such parameters are callbgperparameters

e Assume for now that they are both fixed and known.

Hyperparameters can be learnt usinprough the application of more advanced
techniques.
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The Bayesian approach to neural networks

Physicists like to express quantities suclpés) in terms of a measure dén-
ergy”. The expression is therefore usually re-written as

1 2
p(w) = s e (5wl
where
1
Ey(w) = EHWHQ
d/2
2
Zwla) = —
- (2
1
=2

This is simply a re-arranged version of the more usual equmati
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The Gaussian noise model for regression

We've already seen that for a regression problem with zeramni&aussian noise
having variancer?

()= —=
€)= €X -
p 2 \/To'ﬁ p 20_%

where f corresponds to some unknown network, the likelihood fuomcis

pYIW) = e <—2}7 >t~ flw xz->>2)
n no—1

Note that there are now two variances: for the prior ando? for the noise.
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The Bayesian approach to neural networks

This expression can also be rewritten in physicist-frigridim

plylw) = ﬁ exp (—BEy(w))
where
f==,
' m/2
2,(8) = (2;{)

— L v ))2
(W) = 5;(% f(w;x;))

Here, 5 is a secondhyperparameter Again, we assume it is fixed and known,
although it can be learnt usingusing more advanced techniques.
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The Bayesian approach to neural networks

Combining the two boxed equations gives

p(wly) = exp(—S5(w))

b
Z5<a,ﬁ>

where

S(w) = aEw(w)+ SEy(W)

The quantity
Zs(a, B) = / exp(—S(w))dw
RV

normalises the density. Recall that this is calledehielence
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Example I: gradient descent revisited...

To find hyap (in this scenario by findingvwap) we therefore maximise

1
p(wly) = mcxp(—(aEW(W) + BEy(w)))
or equivalently find
WMAP = argmin%HwH2 + g Z(% — f(w;x;))?

=1
This algorithm has also been used a lot in the neural netwtatature and is
called theweight decayechnique.
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Example II: two-class classification in two dimensions

Examples Prior density p(w)

-3 -2 -1 [ 1 2 3 w2 -10 -10 wy

Likelihood p(y|w) Posterior density p(wly)
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The Bayesian approach to neural networks

What happens as the numberof examples increases?

e The first termcorresponding to the prioremains fixed.

e The second termorresponding to the likelihooithcreases.

So for small training sequences the prior dominates, bulaige onesiy is a
good approximation téyap.
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The Bayesian approach to neural networks

Where have we got to..\We have obtained

p(wly) = mew—(amm T BEy(w)))

Zs(a, B) = /”, exp(—(aBw(w) + BEy(w)))dw
JRW

Translating the expression for tiBayes optimasolution given earlier into the

current scenario, we need to compute

p(Yly,x) = /R | plylw, x)p(wly) dw

Easy huh?Jnfortunately not...
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The Bayesian approach to neural networks

In order to make further progress it's necessary to perfategrals of the general
form

[, Fowptosly)
for various functiond” and this is generally not possible.

There are two ways to get around this:

1. We can use aapproximate fornfor p(wly).

2. We can us&lonte Carlomethods.
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Method 1: approximation tp(w|y)

The first approach introduces@aussian approximatioto p(w|y) by using a

Taylor expansiorf
S(W) = (,Y,EW'(W) + [)’Ey(w)

atwyap.
This allows us to use standard integral
The result will beapproximatebut we hope it's good!

Let’s recall how Taylor series work...

271

Reminder: Taylor expansion

In one dimension the Taylor expansion about a peinte R for a function f :
R —Ris
p 1 4 ! 2 ¢l 1 k rk
f(x) = f(xo) + i(x — @) f'(z0) + Q(I —xo)"f"(x0) + -+ + E(I = 0)" f* (o)
What does this look like for the kinds of function we're irested in? We can try
to approximate
exp (—f(z))
where
4 1 3 2 5
fla)y== — 5 — Tz ,§$+22

This has a form similar t&(w), but in one dimension.
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Reminder: Taylor expansion

The functions of interest look like this:

By replacing— f(z) with its Taylor expansion about its maximum, which is at
Tmax = 2.1437

we can see what the approximationet®(— f(z)) looks like. Note that thexp
hugely emphasises peaks.
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Reminder: Taylor expansion

Here are the approximations fbr= 1, k = 2 andk = 3.

0 0 L 0 —
~ N
e N
-200 -200 / -200 \
-400 -400 -400
//
-600 -600 —~ -600
-5 0 5 -5 0 5 -5 0 5
vq»(j—('r]l) exact exp(#(x)) using T,\}](ﬂ expansion for k =2 !
0.8 0.8
0.6 0.6
0.4 04 ‘w\‘
|
I
0.2 0.2 I
I
0 0 S
-5 0 5 5 0 5

The use oft = 2 looks promising...
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Reminder: Taylor expansion

In multiple dimensionthe Taylor expansion fot = 2 is

F0) & Flxa) + 5306 = x0)" V() + g5 = 30)T V7 Gx0) (= %0)

whereV denotegyradient
df(x) Of(x df(x
Vi) = (Y d . o)
andV?f(x) is the matrix with elements
*f(x)

(Although this looks complicated, it’s just the obviousgeasion of the 1-dimensional
case.)

M, =
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Method 1: approximation tp(w|y)

Applying this to.S(w) and expanding arounghyap

S(W) =~ S(WMAP> + (W - WMAP)T VS(W)‘

WMAP

1
+ §(W — WMAP)TA<W — WMAP)

notice the following:

e As wyap Minimisesthe function the first derivatives are zero and the corre-
sponding term in the Taylor expansidisappears

e The quantityA = VV.S(w)| can be simplified.

WMAP

This is because
A =VV(aEw(w)+ ﬁEy<W)>|

=aol + ﬂVVEy(WMAp)

WMAP
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Method 1: approximation tp(w|y)

Defining
Aw =w — WMAP
we now have 1
S(w) = S(wwmap) + §AWTAAW
The vectorwyap Can be obtained using any standard optimisation methodh (suc
asbackpropagatioh

The quantityVV Ey(w) can be evaluated using axtended form of backpropa-
gation
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A useful integral

Droppingfor this slide onlythe special meanings usually given to vecterand
y, here is a useful standard integral:

If A € R"™"is symmetric then fob € R" andc € R
/ exp (—; (XTAX +xIb + c)) dx
‘ 1 TA-!
_ (271')”/2|A‘_1/2 exp (_2 <C o b : b>>

At the beginning of the course, two exercises were set ifnglthe evaluation of
this integral.

To make this easy to refer to, let’s call it tB¢G INTEGRAL
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Method 1: approximation tp(w|y)

We now have

1 1
plwy) ~ a0 (= S(owme) — AW Adw )

whereAw = w — wyap and using thélG INTEGRAL
Z(a, B) = (2m)" | A7 exp(—S(Wiap))
Our earlier discussion tells us that given a new inpute should calculate

plyox) = [ plylw. xip(wly i

p(y|w, x) is just thelikelihood so...
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Method 1: approximation tp(w|y)

The likelihood we’re using is

plylw,x) = N <_(?/ - J;EIV;’;X)V)

& EXp <_§(Z/ — flw; X))2>

and plugging it into the integral gives

plolxy) x [ e (=50 swix)?) oo (- gowTAsw ) dw

which has no solution!

We needanother approximation...
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Method 1: approximation tp(w|y)

If we assumehatp(w|y) is narrow (this depends o) then we can introduce a
linear approximatiorof f(w; x) at wyap:

fwix) & f(wuap; x) + 8" Aw
whereg = V f(w;x)[, .o

By linear approximation we just mean the Taylor expansiorkfe- 1.

This leads to
‘ 1
p(Yly,x) o / exp <—§ (y — f(Wmap; x) — gTAW)Z - QAWTAAW) dw
RW

and this integral can be evaluated using BI& INTEGRALto give THE AN-
SWER...
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Method 1: approximation tp(w|y)

Finally

exp (_(y — [(Wmap; X))

1
p(Yly,x) = >
\ /27TJ,§ 20}

y
2 1 T A -1
o,=—-+g A" g

Hooray! But what does it mean?

where
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Method 1: approximation tp(w|y)

This is aGaussian densifyso we can now see thatY'|y, x) peaksat f (wuap; x).
That is, theMAP solution

Thevarianceo§ can be interpreted as a measureerftainty.

e The first term ofo,g is 1/ and corresponds to the noise.

e The second term af? is g” A~'g and corresponds to the width pfw|y).

Or interpreted graphically...
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Method 1: approximation tp(w|y)
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Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

1= / F(w)p(wly)dw

is to useMonte Carlomethods. The basic approach is to make the approximation

1
I~ ; F(w;)

where thew; have distributiorp(w|y). Unfortunately, generating; with agiven
distributioncan be non-trivial.
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MCMC methods

A simple technique is to introduce a random walk, so
Wiy = W; +¢€
wheree is zero mean spherical Gaussian and has small varianceo@yithe
sequenceaw; does not have the required distribution. However, we canthese
Metropolis algorithm which doesot accept all the steps in the random walk:
1. If p(w;i1]y) > p(w;|y) then accept the step.
; Ryi+ly)
2. Else accept the step with probabll%.

In practice, the Metropolis algorithm has several shortcg®si and a great deal
of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Mor@arlo methods,’

University of Toronto, Department of Computer Science fieeth Report
CRG-TR-93-1, 1993.
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Approximate inference for Bayesian networks

MCMC methods also provide a method for performagproximate inferencin
Bayesian networks

Say a system can be in a sta@@nd moves from state to state in discrete time steps
according to a probabilistic transition

Pr(s — &)
Let m,(s) be the probability distribution for the state aftesteps, so
Ti(s) = Z Pr(s — s')m(s)

If at some point we obtaim;,(s) = m(s) for all s then we have reached a
stationary distributionr. In this case

Vs'm(s') = > Pils — §)m(s)

There is exactly one stationary distribution for a givesP# s’) provided the
latter obeys some simple conditions.
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Approximate inference for Bayesian networks

The condition ofdetailed balance
Vs, s't(s)Pr(s — §') = n(s')Pr(s’ — s)
is sufficient to provide & that is a stationary distribution. To see this simply sum:
D w(s)Pris — s') =Y 7(s)Pr(s’ — s)
=7(s)>_Pris' —s)

=1

= n(s)

If all this is looking a little familiar, it's because we novate an excellent ap-
plication for the material irMathematical Methods for Computer Sciendéhat
course used the alternative telmeal balance
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Approximate inference for Bayesian networks

Recalling once again the basic equation for performing alodistic inference
Pr(Q|e)f—P1Q/\e ZPrQue
where

e () is the query variable.
e ¢ is the evidence.
e y are the unobserved variables.

e 1/7 normalises the distribution.

We are going to consider obtaining samples from the digiohPr(Q, Ule).
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Approximate inference for Bayesian networks

The evidence is fixed. Let thetateof our system be a specific set of values for
thequery variable and the unobserved variables

5= (Q7 Uy, U2y - - - 7un> = (Slv 82,4y 571+1>
and defines; to be the state vectavith s; removed
S; = (81., ey Sic1, Sy ey Sn+1>

To move froms to s’ we replace one of its elements, saywith a new values!
sampled according to

SZ ~ Pr(Sj|§,i7 6)
This has detailed balance, and hagPU|e) as its stationary distribution.
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Approximate inference for Bayesian networks

To see that Rt), Ule) is the stationary distribution

7(s)Pr(s — &) = Pr(s|e)Pr(s}[s;, )
= Pr(s;, Sile)Pr(s[s;, e)
= Pr(s;s;, e)Pr(s;|e)Pr(s|s;, e)
= Pr(s;s;, e)Pr(s},5le)
= Pr(s’ — s)n(s)
As a further simplification, sampling from £;|s;, e) is equivalent to sampling
S; conditional on its parents, children and children’s pagent
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Approximate inference for Bayesian networks

Sa

e We successively sample the query variable and the unolibeaviables, con-
ditional on their parents, children and children’s parents

e This gives us a sequensg sy, . . . which has been sampled according taPi|e).

Finally, note that as
e) =Y PrQ,ule)

we can just ignore the values obtained for the unobservadhbtas. This gives
usqi, qo, . .. with

qi ~ PriQle)
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Approximate inference for Bayesian networks

To see that the final step works, consider what happens wheestiraate the
expected value of some function @f

E[f(Q)]=_ f(a)Prgle)
= > fl@))_ Prig ule)
=Y > fla)Prig,ule)

q u

so sampling using P¢, u|e) and ignoring the values far obtained works exactly
as required.
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A (very) brief introduction into how to learn hyperparanrste

So far in our coverage of the Bayesian approach to neuralanksythehyperpa-
rameterse and 3 were assumed to be known and fixed.

e But this is not a good assumption because...

e ...« corresponds to the width of the prior agdo the noise variance.
e So we really want to learn these from the data as well.

e How can this be done?

We now take a look at one of several ways of addressing thidemo
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The Bayesian approach to neural networks

Earlier we looked at the Bayesian approachearal networksising the following
notation. We have:
¢ A neural network computing a functiofiw; x).
e Atraining sequence = ((X1,41); - - - , (Xm, Ym)), Split into
y=(y v2 - Un)
and

X:<Xl X - Xm)

Theprior distributionp(w) is now on the weight vectors and Bayes’ theorem tells
us that (yw)p(w)
ply|w)p(w
wy)=——77-—""
p(wly) o)

In addition we have &aussian priorand a likelihood assumin@aussian noise
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The Bayesian approach to neural networks

The prior and likelihood depend am and 5 respectively so we now make this
clear and write
pyIw, Bp(wla)

plyla, B)
(Don’t worry about recalling thectual expressionor the prior and likelihood
just yet, they appear in a few slides time.)

pwly, ., 8) =

In the earlier slides we found that the Bayes classifier shimufact compute

p(Yly,x,a,3) = /H%Wp(ylwvxy Bp(wly, a, B) dw

and we found an approximation to this integral. (Again, theassary parts of the
result are repeated later.)
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Hierarchical Bayes and the evidence

Let’s write down directly something that might be useful rmlv:

_ plyla, B)p(e, )
[)(Oé,/[ﬂy) - p(y)

If we know p(«, Gly) then a straightforward approach isuse the values foi
and  that maximise it

Here is a standard trickassume that the priop(«, () is flat, so that we can just
maximise

p(yla, B)
This is calledtype 1l maximum likelihooénd is one common way of doing the
job.

As usual there are other ways of handlingnd3, some of which are regarded as
more “correct”.
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Hierarchical Bayes and the evidence

The quantity
plyle, 9)

is called theevidence

When we re-wrote our earlier equation for the posterior iteng the weights,
makinga andg explicit, we found

_ plylw, o, B)p(wla, B)
p<W|y70‘7ﬁ) - p(y|a.ﬂ>

Sothe evidence is the denominator in this equation

This is thecommon pattermnd leads to the idea diierarchical Bayes the ev-
idence for the hyperparameteat one level is thalenominator in the relevant
application of Bayes theorem
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An expression for the evidence

We have alreadgerived everything necessarywrite anexplicit equation for the
evidencdor the case of regression that we've been following.

First, as we know about a lot of expressions involviagve can introduce it by
the standard trick afarginalising

plylev, ) = / ply. wlae, B)dw
_ / p(ylw, o, Ap(wla, B)dw
_ / p(y|w, B)p(wla)dw

where we've made the obvious independence simplifications.

The two densities in this integrake just the likelihood and prior we've already
studied

We've just conditioned o and3, which previously were constants but are now
being treated as random variables.
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An expression for the evidence

Here are the actual expression for the prior and likelihood.
The prior is
1
= ——  exp(—aEy
pwla) = s exp (—aFir(w)
where
o\ W2 1
zvle) = () andE() = 5wl

and the likelihood is

1
plylw, 3) = 7o) exp (—BEy(w))
where s .
20 = (%) andiytw) = 530 hwix)*

=1
Both of these equations have been copied directly fromezaslides: there is
nothing to add
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An expression for the evidence

That gives us

pivla.) - (£) o (Z)" o stowyam

S(w) = abw(w) + GEy(w)
This isexactly the integral we first derived an approximation. for

where

Specifically
/exp (—S(w)) dw ~ (2m)"V/2|A| 7% exp(—S(Wmap))

where
A = ol + BVVEy(Wuap)

andwyap is themaximum a posteriori solution
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An expression for the evidence

Putting all that together we get axpression for the logarithm of the evidence

14
log p(y|a, 5) ~0 logav — % log 2w + % log 3
1
— aEw(wwap) — BEy(Wmap)

Again, we're using the fact that we want toaximise the evidencand this is
equivalent tanaximising its logarithmvhich turns a product into a more friendly
sum.
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Maximising the evidence

We want to maximise this, so let’s differentiate it with resptoa andg.

Fora Dlogp(yla, ) W 1910g Al
ogplyla,5) W .~ _ 10log
O T 2 B (W) 2 o
How do we handle the final term? This is straightforward if va@ compute the

eigenvaluesf A.

Recall that the: eigenvalues\; andn eigenvectors; of ann x n matrix M are
defined such that
Myv,; = /\iVZ'forZ.: 1,....n

and the eigenvectors are orthonormal

1ifi=y
T, _ J
Vivi= { 0 otherwise.

One standard result is thitte determinant of a matrix is the product of its eigen-

values ,
M| =[]
i=1
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Maximising the evidence

We have
A=aol+ ﬁVVEy(WMAp)

Say the eigenvalues gfVV Ey(wwmap) are );. (These can be computed using
standard numerical algorithms.)

Then the eigenvalues & area + ); and

dlog|A| 0 ‘ i _
e~ o (log E(Oz +A)

W
= 0% (Z log(a + )\,¢)>

1=1

7% 1 9o+ N)
_i:1a+)\i Jda

This remains tricky becaugke eigenvalues might be functionsnof

304




Maximising the evidence

To make further progress, assufsemetimes correct, sometimes naltit the),
do notdepend onv.

In that case w

dlog|A| 1
oa ; a+ A
— Tracd A ')

becauseM ! has eigenvaluel/)\; and the trace of a matrix is equal to the sum of
its eigenvalues.

Finally, equating the derivative to zero gives:
w

1
= Ew —Z A=
o Ew(wmap) 2Trace( )

w
1 a
a=——(w-S" "=
QEH/(WMAp) < 12:1: o+ )\z>

which can be used to update the valuedor

or
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Maximising the evidence

We can now repeat the process to obtain an updaté:for

dlogp(y|e, B) _ m (w 10log |A|

B =5 by Wwap) ~ 5 Bk

In this case

Jdlog |A 0
085| | 86<E loga+A))
0

1
_Za+)\ 66

and again we have potentially trlcky derivative
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Maximising the evidence

As the)\; are the eigenvalues ofVV Ey (wuap) We have
o\ N

98~ B

(can you see why&o
dlog|A|l 1
ap B o+ )\
Equating the derivative to zero gives

1 w \,
= |m — d
b 2Ey<WMAp> ( ; o+ /\z’>

which can be used to update the valuegor
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Maximising the evidence

Here’s why the derivative works.

Say
M= VVEy(WMAp>

so we're interested in\; /03 when the); are the eigenvalues ¢tM. Thus
(BM)v; = \iv;
and using the fact that the eigenvectors are orthonormal
BvIMyv,; = \vivi =\
So

and
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Maximising the evidence

Summary

Define

LA
6, - :
! 12:1: ap + A

where the subscript denotes the fact that we're using thewilg equations to
periodically update our estimates@fandg.

Collecting the two update equations together we have

0,
Q] = —F——
T 2B (Wwap)
and
m— 0,
Brit = et
t+1 2E, (Wanp)
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Maximising the evidence

This suggests method for the overall learning process

1. Choose the initial values, and 3, at random.

2. Choose an initial weight vectev according to the prior.

3. Use a standard optimisation algorithm to iterativelyreate wyap.

4. While the optimisation progresses, periodically usesitpgations above to re-
estimater and .

Step 4 requires that we compute an eigendecomposition,hwhight well be
time-consuming. If necessary we can make a simplification.

Whenm >> W itis reasonable to expect that~ W an so we can use

W
T 9B (wwap)
and
m
Br1= s
1 =5 o (Wanp)
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An alternative: integrate the hyperparameters out

While choosingx and 5 by maximising the evidence leads to an effective algo-
rithm, it might be argued that a more correct way to deal whsste parameters
would be tointegrate them out

piwly) = [ [ vl 5ly)dads

(Recall thegeneral equation for probabilistic inferenaghere we integrate out
unobserved random variables.)

Re-arranging this we have

p(w, o, Bly)dads = i Ply|w, @, B)p(w, @, f)dad
y

:Ly// (y[w, @, B)p(wla, B)pla, B)dad
:L) [ [ stslw ptwlarp(eip(s)dads

where we're assuming and are independent.
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An alternative: integrate the hyperparameters out

In order to continue we need to specify priors@ands.

On this occasion we have a good reason to choose particides fase andj are
scale parameters

In general, a scale parameteis one that appears in a density of the form

1,/
plalo) =1 (£)
The standard deviation of a Gaussian density is an example.

What happens to this density if veealex such that’ = cx?
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Standard result number 1

We need to recall how to deal withansformations of continuous random vari-
ables

Say we have a random variablevith probability densityp,.(z).
We then transform to y = f(z) wheref is strictly increasing.

What is the probability density function g There is a standard method for
computing this. (See NST maths, or the 1A Probability cojirse

oY)
Y = )

313

An alternative: integrate the hyperparameters out

Applying this whent’ = cx we have

flx)=cx
) ==
flla)=c

and so

pulal) = =1 (1> _ Ly (‘)
COoO CcoO o o

Thus the transformation leaves the density essentiallpamged, and in particular
we want the densities(c) andp(o’) to be identical.

It turns out that this forces the choice

This is animproper priorand it is conventional to také = 1.
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Standard result number 2

Returning to the integral of interest

ﬁ / / p(ylw, B)p(wla)p(a)p(B)dads

Taking the integral for first we have

/p(w|a)p(a)da = /mexp(faEw(w))da

1 /ra\W/? «@ 9
[ HE)" o ()

and to evaluate this we use the followisg@ndard resutt

= In+1
/ a" exp(—ax)dr = (nn+1 )
0 a

wheren > —1 anda > 0. So the integral becomes

e D(W/2)
(2m)~/ ET(W)W/Z
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An alternative: integrate the hyperparameters out

Repeating the process fgrand using the same standard result we have

m/2
[ otstw s = [ 5(32) " ew-sm s
_ —m/2 F<m/2>
- (27T) / Ey(W>m/2

Combining the two expression we obtain

1 _w L(W/2) _ ['(m/2)
_log = —loo [ ——(2 E’L/Ziv 9 m/2_~ \"""/[ =)
Ogj p(W\y) Ob (p(y) ( ™ E[,L'(W)W/Q( 7T) Ey(w)”,/g
w m
=5 log Ew(w) + 5} log Ey(w) 4 constant
andwe want to minimise thiso we need

w1 3Ew(w)+m 1 O0Ey(w)
2 Ey(w) ow 2 Ey(w) Ow
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An alternative: integrate the hyperparameters out

Theactual value for the evidends
1

~logp(wly) = — log (Mm exp(— (B (w) + ﬂEy<W)))>

= aEw(w) + fEy(w) + constant
andwe want to minimise thiso we need
QO w (W) +ﬁ(?Ey(W)
ow ow

This should make UYERY VERY HAPPYecause if we equate the two boxed
equations we get

=0

o= w
o QEH(W)

and m
b= QEy(W)

and so the result fantegrating out the hyperparameteagrees with the result for
optimising the evidence

Reinforcement Learning
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We now examine:
e Some potential shortcomings of hidden Markov models, andupéssised
learning.
e An extension know as thilarkov Decision Process (MDP)

e The way in which we mightearn from rewardgyained as a result afcting
within an environment

e Specific, simple algorithms for performing such learningd @heir conver-
gence properties.

Reading:Russell and Norvig, chapter 21. Mitchell chapter 13.
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Reinforcement learning and HMMs

Hidden Markov Models (HMMs) are appropriate when our agent neothed
world as follows

and only wants to infer information about tktateof the world on the basis of
observing the availablevidence

This might be criticised as un-necessarily restrictedhaalgh it is very effective
for the right kind of problem.
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Reinforcement learning and supervised learning

Supervised learners learn fraspecifically labelled chunks of information

This might also be criticised as un-necessarily restrictiedre are other ways to
learn.
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Reinforcement learning: the basic case

We now begin to model the world in a more realistic way as fedp

In any state:
Perform an actiom to move to a new state. (There may be many possibilities.)
Receive a reward depending on the start state and action.

The agent caperform actionsn order tochange the world’s state

If the agent performs an action in a particular state, theaiits a corresponding
reward
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Deterministic Markov Decision Processes

Formally, we have a set of states
S ={s1,52,...,8,}
and in each state we can perform one of a set of actions
A={ay,a9,...,an}.

We also have a function
S:SxA—-S

such thatS(s, a) is the new state resulting from performing actioin states,
and a function
R:SxA—-R

such thatR (s, a) is thereward obtained by executing actionin states.
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Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of cagrsidle importance:

The agent does not have access to the functibasdR |

It therefore has téearn a policy, which is a function
p:S—A
such thap(s) provides the action that should be executed in state

What might the agent use as its criterion for learning a p8lic
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Measuring the quality of a policy

Say we start in a state at timedenoteds;, and we follow a policyp. At each
future step in time we get a reward. Denote the rewayds. 1, ... and so on.

A common measure of the quality of a poligyis thediscounted cumulative re-
ward

o0

) — i
VP(ss) = E €Tty
i=0
2
=Tt €rg ) €T+

where0 < ¢ < 1 is a constant, which defines a trade-off for how much we value
immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we stidile our agent to
prefer rewards gained quickly.

324




Measuring the quality of a policy

Other common measures are theerage reward
T

1
Thm ?ZTH_,;

— 00 N
1=0

and thefinite horizon reward

T
E Titi
i=0

In these notes we will only address the discounted cumelagward.
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Two important issues

Note that in this kind of problem we need to address two paleity relevant
issues:

e The temporal credit assignmemroblem: that is, how do we decide which
specific actions are important in obtaining a reward?

e Theexploration/exploitatiorproblem. How do we decide betweerploiting
the knowledge we already have, aexbloringthe environment in order to
possibly obtain new (and more useful) knowledge?

We will see later how to deal with these.
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The optimal policy

Ultimately, our learner’s aim is to learn tloptimal policy

= argmax V?*(s
popt =}
P

for all s. We will denote the optimal discounted cumulative reward as
Vopr(s) = Vo(s).

How might we go about learning the optimal policy?
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Learning the optimal policy

The only information we have during learning is the indivatitewards obtained
from the environment.

We could try to learri;y(s) directly, so that states can be compared:
Considers as better thar' if Vopi(s) > Vopi(s').

However we actually want to compaaetions notstates LearningVopu(s) might
help as
Popt(s) = argmax [R(s, a) + eVop(S(s, a))]

a

butonly if we knowS andR.

As we are interested in the case where these functioneaenown, we need
something slightly different.

328




The Q function

The trick is to define the following function:
Q(S-, G,) = R(S, CL) + 6‘/0pI<S<57 a’))

This function specifies the discounted cumulative rewardiobd if you do ac-
tion ¢ in states and then follow the optimal policy

As
Dopt(s) = argmax Q(s, a)

then provided one can lea@ it is not nécessary to have knowledge®and R
to obtain the optimal policy
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The Q function

Note also that
Vopt(s) = max (s, o)

and so

Q(s,a) = R(s,a) + € max Q(8(s,a),a)

which suggests a simple learning algorithm.
Let Q' be our learner’s estimate of what the ex@ctunction is.

That is, in the current scenari@’ is a table containing the estimated values of
(s, a) for all pairs(s, a).
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Q-learning

Start with all entries i’ set to0. (In fact we will see in a moment that random
entries will do.)
Repeat the following:

1. Look at the current stateand choose an actian (We will see how to do this

in a moment.)

2. Do the actioru and obtain some rewaf@(s, a).

3. Observe the new stafs, a).

4. Perform the update

Q'(s,a) = R(s,a) + em(?xQ’(S(s, a),a)

Note that this can be done @pisodes For example, in learning to play games,
we can play multiple games, each being a single episode.
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Convergence of-learning

This looks as though it might converge!
Note that, if the rewards are at le@sand we initialise?)’ to 0 then,
an 5, a Q;wl(& CL) 2 Q/n(sv CL)

and
n,s,a Q(s,a) > Q(s,a) > 0

However, we need to be a bit more rigorous than this...
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Convergence oP-learning

If:

1. The agent is operating in an environment that is a detéstiuMDP.
2. Rewards are bounded in the sense that there is a coistafisuch that
Vs,a |R(s,a)| < ¢

3. All possible pairs anda are visited infinitely often.

Then theQ-learning algorithm converges, in the sense that
Va,s Q. (s,a) — Q(s,a)

asn — oo.
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Convergence of-learning

This is straightforward to demonstrate.

Using conditior3, take two stretches of time in which allanda pairs occur:

All s,a occur All's, a occur

Define
£(n) = max|Q,(s,a) — Q(s, a)|
the maximum error i)’ atn.

What happens whef}, (s, a) is updated t&)!, (s, a)?
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Convergence oP-learning

We have,
|Qi1(s,a) — Q(s, a)
= |(R(s,a) + emax Q,(S(s,a), @) — (R(s,a) + e max Q(S8(s, a), a))]
= ¢ max Q;(S(s.,”a)., a) — max Q(8(s, a), ) ”
< emax|Q(S(s, a), ) — Q(S(s, ), )]
< emax|Q)(s,0) = Qs a)
= ef(n).

Convergence as described follows.
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Choosing actions to perform

We have not yet answered the question of how to choose attigesform during
learning.

One approach is to choose actions based on our current &styhéor instance

action chosen in current state= argmax Q'(s, a).
a

However we have already noted the trade-off between explorand exploita-
tion. It makes more sense to:

e Exploreduring the early stages of training.
e Exploitduring the later stages of training.

This seems particularly important in the light of conditidof the convergence
proof.
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Choosing actions to perform

One way in which to choose actions that incorporates thepareaments is to
introduce a constant and choose actiorobabilisticallyaccording to

AQ(s0)

Pr(actiona|states) = ———
S A )

Note that:

e If )\ is smallthis promotegxploration

o If )\ islarge this promote®xploitation

We can vary)\ as training progresses.

337

Improving the training process

There are two simple ways in which the process can be improved

1. If training is episodic, we can store the rewards obtaitdedng an episode
and updatdackwardsat the end.

This allows better updating at the expense of requiring maeenory.

2. We can remember information about rewards and occa$joreliseit by
re-training.
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Nondeterministic MDPs

The Q-learning algorithm generalises easily to a more realistigation, where
the outcomes of actions apeobabilistic

Instead of the function§ andR we haveprobability distributions
Pr(new statécurrent stateaction)

and

Pr(rewardcurrent stateaction).
and we now us&(s,a) andR(s, a) to denote the corresponding random vari-
ables.

We now have

Vp =K (Z GiT‘t+¢>
i=0
and the best policyop maximises)?.
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Q-learning for nondeterministic MDPs

We now have
Q(s,a) = E(R(s,a)) + € Y _Pria]s,a)V° (o)

=E(R(s,a)) + ¢ »_Prols, a) max (0, )

g

and the rule for learning becomes

Q;H—l = (1 - 9"-%—1)@;:(53 CL) + 911+1 |:R(Sv CL) + Hl(ilX an<8<87 CL), O[)

with

1

Opoy = —————
i 1+ U71+1(S7 (I)

wherev,,.1(s, a) is the number of times the pairanda has been visited so far.
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Convergence oD-learning for nondeterministic MDPs

If:

1. The agent is operating in an environment that is a nonaétestic MDP.
2. Rewards are bounded in the sense that there is a coistafisuch that
Vs,a |R(s,a)| < ¢

3. All possible pairs anda are visited infinitely often.

4.n,(s,a) is theith time that we do action in states.

and also...
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Convergence oP-learning for nondeterministic MDPs

...we have

0<0,<1

Z grbi(s,a) =00
i=1

Z 9.721,5(5,/1) <0
1=1
then with probabilityl the Q-learning algorithm converges, in the sense that
Va,s Q. (s,a) — Q(s,a)

asn — oo.
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Alternative representation for thg' table

But there’s always a catch...
We have to store the table f¢):
e Even for quite straightforward problems it is HUGE!!! - cairtly big enough
that it can't be stored.

o A standard approach to this problem is, for example, to seprEit as aneural
network

e One way might be to make anda the inputs to the network and train it to
produce?)’(s, a) as its output.
This, of course, introduces its own problems, although étbeen used very suc-
cessfully in practice.

It might be covered irrtificial Intelligence lll, which unfortunately does not yet
exist.
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